2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Убегающие экспоненты
Сообщение10.02.2024, 18:25 
Заслуженный участник
Аватара пользователя


18/05/06
13440
с Территории
Возьмём две константы $b>a>1$.

Очевидно, графики $a^x$ и $b^x$ пересекаются всегда в одной точке (в нуле).

Графики $a^{a^x}$ и $b^{b^x}$ пересекаются тоже всегда в одной точке (теперь не в нуле, но это нам неважно).

Сколько раз пересекаются графики $a^{a^{a^x}}$ и $b^{b^{b^x}}$?

 Профиль  
                  
 
 Re: Убегающие экспоненты
Сообщение10.02.2024, 21:01 


29/01/24
82
Почему нельзя тупо решить? $a^p = b^q \Leftrightarrow p\ln a = q \ln b$. В нашем случае ${a^{a^x}} \ln a = {b^{b^x}}\ln b \Rightarrow \dfrac{ {b^{\large b^x}} }{ {a^{\large a^x}}} = \dfrac{\ln a}{\ln b} < 1$, однако левая часть никогда не меньше 1, т.к. это монотонно возрастающая функция на всей прямой, которая в минус бесконечности равна 1.

 Профиль  
                  
 
 Re: Убегающие экспоненты
Сообщение10.02.2024, 21:17 
Заслуженный участник
Аватара пользователя


18/05/06
13440
с Территории
Откуда инфа, что левая часть - это монотонно возрастающая функция на всей прямой?

 Профиль  
                  
 
 Re: Убегающие экспоненты
Сообщение10.02.2024, 21:24 


29/01/24
82
Да, признаю, ерунда вышла. Надо точнее проверять наличие корней. Конечно же, монотонность будет только в области $x > \dfrac{2(\ln \ln a - \ln \ln b)}{\ln b/a}$, а левее - непонятно.
Впрочем, при $a^a < b$ их точно не будет, т.к. обе (изначальные) функции будут находиться в разных полосах ($y = a, y = a^a$ и $y = b, y=b^b$).

Надо по сути решить уравнение $\dfrac{ {b^{\large b^x}} }{ {a^{\large a^x}}} = \dfrac{\ln a}{\ln b} = c$. Логарифмируем: $b^x \ln b - a^x\ln a = \ln \ln a - \ln \ln b$. Найдем минимум функции $b^x\ln b - a^x\ln a$. Он достигается в точке $x = \dfrac{2(\ln \ln b - \ln \ln a)}{\ln a - \ln b}$, а само значение будет равно
$ b^{\tfrac{2(\ln\ln b - \ln \ln a)}{\ln a - \ln b} } \ln  b - a^{ \tfrac{2(\ln\ln b - \ln \ln a)}{\ln a - \ln b} }\ln a$, его сравнить с $\ln\ln a - \ln\ln b$. И вот кажется, что все-таки правая часть больше (менее отрицательна), но надо бы доказать. Если и есть какой-то более экономный путь (скорее всего есть), то пока его не вижу.

 Профиль  
                  
 
 Re: Убегающие экспоненты
Сообщение11.02.2024, 09:55 
Заслуженный участник
Аватара пользователя


07/03/06
1928
Москва
Пусть $x=x_0$ - значение, при котором $\frac{a^{a^x}}{b^{b^x}}=1$. Можно заметить, что при $x=2x_0$ выражение $\frac{a^{a^x}}{b^{b^x}}$ достигает максимума.

Теперь фактически нужно показать, что при $b>a>1$:
$$\frac{a^{a^{2x_0}}}{b^{b^{2x_0}}}<\frac{\ln b}{\ln a}$$
или $$a^{a^{2x_0}}\ln a<b^{b^{2x_0}}\ln b$$
А поскольку у нас $a^{a^{x_0}}=b^{b^{x_0}}$ делим левую часть этого последнего неравенства на $a^{a^{x_0}}$, правую часть неравенства на $b^{b^{x_0}}$ до тех пор, пока не получим 1, т.е. получаем:
$$\ln a<\ln b $$
Таким образом, точек пересечения нет.

 Профиль  
                  
 
 Re: Убегающие экспоненты
Сообщение11.02.2024, 12:36 
Аватара пользователя


11/12/16
14485
уездный город Н
Введем обозначение: $y = a^х$

Тогда: $b^x = y^{\log_a b}$

Подставим:
$$a^{a^y} = b^{b^{y^{\log_a b}}}$$
Прологарифмируем два раза по основанию $a$:

$$y = y^{\log_a b} \log_a b + \log_a \log_a b$$
$$y - y^{\log_a b} \log_a b = \log_a \log_a b$$

Справа - положительное число.
Слева - функция от $y$, которая при $0 < y < 1$ (не обязательно на всём этом интервале) может принимать положительные значения. При $\log_a b \to \infty$ максимум этой функции стремится к единице.

Таким образом, при $ \log_a \log_a b \ge 1$ - решений нет.
Но могут ли быть решения при $\log_a \log_a b < 1$? Да, могут.
Покажем это:
$\log_a b > 1$, так как $b>a$
Пусть $\log_a b = 3$
Тогда $\max (y - 3 y^3) = \frac{2}{9}$, и $\log_a 3 < \frac{2}{9}$
Итого: например, при $a> 3^{9/2}$ и $b = a^3$ будет два корня.

-- 11.02.2024, 13:06 --

Вот, например, два корня для $a=3^5 = 343$, $b=a^3 = 40353607$

 Профиль  
                  
 
 Re: Убегающие экспоненты
Сообщение11.02.2024, 13:29 


29/01/24
82
Интересно получается. Я ошибался - думал, что уравнение $b^x \ln b - a^x\ln a = \ln \ln a - \ln \ln b$ не имеет корней, т.к. минимум левой части (равный $ b^{\tfrac{2(\ln\ln b - \ln \ln a)}{\ln a - \ln b} } \ln  b - a^{ \tfrac{2(\ln\ln b - \ln \ln a)}{\ln a - \ln b} }\ln a$) будет всегда больше, чем $\ln \ln a - \ln \ln b$ (и пытался это доказать). Но это неправда, данный минимум вполне может быть при некоторых значениях $1<a<b$ меньше, чем $\ln\ln a - \ln \ln b$, что в силу непрерывности действительно даст два корня (гладкая функция, имеющая один экстремум-минимум, который лежит ниже некоторой горизонтальной прямой, пересекает эту горизонтальную прямую в двух точках).

 Профиль  
                  
 
 Re: Убегающие экспоненты
Сообщение11.02.2024, 13:32 
Заслуженный участник
Аватара пользователя


18/05/06
13440
с Территории
EUgeneUS, лучше бы Вы сказали "Пусть $\log_a b = 2$", там красивее выходит.

 Профиль  
                  
 
 Re: Убегающие экспоненты
Сообщение11.02.2024, 13:33 
Аватара пользователя


11/12/16
14485
уездный город Н
UPD, и понятно, что раз есть области в $a \times b$, где есть два действительных корня, и где нет ни одного действительного корня, то на границе областей будет один действительный корень.

Вот, например, при $a = 2^8 = 256; b = a^2 = 65536$ имеется один действительный корень.

-- 11.02.2024, 13:34 --

ИСН в сообщении #1629115 писал(а):
EUgeneUS, лучше бы Вы сказали "Пусть $\log_a b = 2$", там красивее выходит.


Этот вариант рассмотрел, когда искал пример для случая с одним действительным корнем, см. выше. :wink:

 Профиль  
                  
 
 Re: Убегающие экспоненты
Сообщение11.02.2024, 14:13 
Заслуженный участник
Аватара пользователя


18/05/06
13440
с Территории
Отлично! Теперь осталось как-то качественно охарактеризовать ту область в $a\times b$, где между кривыми два пересечения (а на границе которой, значит - одно касание).

 Профиль  
                  
 
 Re: Убегающие экспоненты
Сообщение11.02.2024, 15:05 
Аватара пользователя


11/12/16
14485
уездный город Н
Из $\log_a \log_a b < 1$, следует, что при $b \ge a^a$ корней нет.

Но при более точном описании областей столкнулся с трудностями.

Введем параметр $A = \log_a b$
Так как $b > a$, $A \in (1, \infty)$

Рассмотрим функцию $f(y)= y - Ay^A$
и введем функцию $g(A) := \max_{y>0}{f(y)}$

Тогда условие на единственность корня будет:
$g(A) = \log_a A$

$g(A) = A^{\frac{-2}{A-1}} (1-A^{-1})$, если нигде не ошибся.

Тогда условие на единственность корня:

$A^{\frac{-2}{A-1}} (1-A^{-1}) = \log_a A$

Как отсюда перейти к областям в $a \times b$, как-то не соображу сходу :roll:

 Профиль  
                  
 
 Re: Убегающие экспоненты
Сообщение11.02.2024, 15:20 
Заслуженный участник
Аватара пользователя


18/05/06
13440
с Территории
Сверим часы. Ваше $A$ у меня называлось $c$, а выражение было:
$$\ln a =\dfrac{\ln c}{c-1}\cdot c^{\frac{c+1}{c-1}}$$
Поскольку $b=a^c$, то это нам даёт граничную кривую, только не в явном, а в параметрическом выражении. Ну и что. Исследовать её можно и так.

-- менее минуты назад --

По-дурацки как-то теперь выглядят оба обозначения. Если уж этот параметр делать нашей главной переменной, может, назовём его не $A$ и не $c$, а $\xi$?

 Профиль  
                  
 
 Re: Убегающие экспоненты
Сообщение11.02.2024, 16:02 
Аватара пользователя


11/12/16
14485
уездный город Н
ИСН в сообщении #1629135 писал(а):
Сверим часы. Ваше $A$ у меня называлось $c$, а выражение было:
$$\ln a =\dfrac{\ln c}{c-1}\cdot c^{\frac{c+1}{c-1}}$$


Да, мой вариант сводится к этому.

ИСН в сообщении #1629135 писал(а):
Если уж этот параметр делать нашей главной переменной, может, назовём его не $A$ и не $c$, а $\xi$?


Это, как Вам удобнее.

-- 11.02.2024, 16:07 --

ИСН в сообщении #1629135 писал(а):
Поскольку $b=a^c$, то это нам даёт граничную кривую, только не в явном, а в параметрическом выражении. Ну и что. Исследовать её можно и так.


Так-то оно так. Но что-то не могу прийти к какому-то более-менее наглядному варианту.
Кстати, возможно, будет удобнее исследовать не на $a \times b$, а на $\ln a \times \ln b$

 Профиль  
                  
 
 Re: Убегающие экспоненты
Сообщение12.02.2024, 16:25 
Аватара пользователя


11/12/16
14485
уездный город Н
ИСН в сообщении #1629135 писал(а):
Исследовать её можно и так.


Вручную исследовать муторно. А с помощью WA, почему бы не поисследовать.

1. В координатах $x = \ln b; y = \ln a$
Условие запишется как:
$\frac{(\frac{x}{y})^{\frac{x+y}{x-y}}}{x-y} \ln \frac{x}{y}=1$

И вольфрам рисует так

Поигравшись с масштабом, можно бы сделать вывод, что есть асимптоты где-то между $4$ и $5$, но это не так :wink:

2. Посмотрим в координатах $x = \log_a b = \frac{\ln b}{\ln a}; y = \ln a$
И вольфрам рисует так

И уже видно, что между $4$ и $5$ - это не асимптота, а минимум.

Там же, в вольфраме, можно его найти, приблизительно:
$x_m \approx 11.9548; y_m \approx 4.25905$

Отсюда сразу вывод, при $a < e^{y_m} \approx 70.7427$ корней нет.

В координатах $\tilde{x} = \ln b; \tilde{y} = \ln a$ точка минимума будет выглядеть так:
$\tilde{x_m} = \ln ((e^{y_m})^{x_m}) =y_m x_m  \approx 50.916$
$\tilde{y_m} = y_m \approx 4.25905$

 Профиль  
                  
 
 Re: Убегающие экспоненты
Сообщение12.02.2024, 19:55 
Заслуженный участник
Аватара пользователя


18/05/06
13440
с Территории
Вот! Вот оно!
Лично меня поразил размер возникающих чисел. Казалось бы, скажем, $e^x$ растёт ни быстро, ни медленно - "как все", $e^{e^x}$ - уже очень быстро, а $e^{e^{e^x}}$ - слишком быстро, быстрее только стенка (вертикальная); что там дальше может быть интересного? Оказывается, интересное-то только начинается, когда $e$ переваливает за 70.

Осталось выяснить пару мелких деталей. Сколько у каждой кривой касающихся кривых? Очевидно, сначала ни одной, потом при $a_{min}$ - одна, а потом - две, так? Так, но есть нюанс. При относительно небольших $a$ (скажем, 100) - обе кривых, касающихся данной, будут сверху от неё. А когда мы дойдём до таких кривых, которые сами других касались сверху, то у них-то одна будет касаться снизу! Когда и как происходит перескок между этими режимами?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 18 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group