2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Лоренцево сокращение
Сообщение27.11.2023, 21:36 


25/12/22
5
Пусть K' покоится собственная длина $L_0=x'_2-x'_1$. Пусть в момент t для K длина есть $L=x_2-x_1$. Совершим преобразования Лоренца:
$t'_1$=γ$t-$βγ$x_1/c$
$t'_2$=γ$t-$βγ$x_2/c$
Тогда Δ$t'=-$ β γ $L/c$
В чем может быть интерпретация такого результата? В литературе этот знак минус опускается и более того, утверждается, что Δ$t'>0$, а значит и $t'_2>t'_1$. Я не смог найти объяснение, почему на "-" закрывают глаза и поэтому полагаюсь на вас.

Например, знак минус также опущен и на Википедии, как и во многой другой лит-ре: https://clck.ru/36pTs2

 Профиль  
                  
 
 Re: Лоренцево сокращение
Сообщение27.11.2023, 21:59 
Заслуженный участник
Аватара пользователя


15/10/08
12617
Поздравляю с изобретением машины времени! Вы не могли бы слетать в прошлое к моменту, когда зародился этот вопрос, и спросить у прошлого себя, что именно ему не понятно?

 Профиль  
                  
 
 Re: Лоренцево сокращение
Сообщение27.11.2023, 22:02 


25/12/22
5
Утундрий в сообщении #1620104 писал(а):
Поздравляю с изобретением машины времени! Вы не могли бы слетать в прошлое к моменту, когда зародился этот вопрос, и спросить у прошлого себя, что именно ему не понятно?

Поздравляю с очень смешной шуткой. Вместо того, чтобы плевать ядом, могли бы либо промолчать, либо нормально ответить.

 Профиль  
                  
 
 Re: Лоренцево сокращение
Сообщение28.11.2023, 00:50 


27/10/23
78
Balasanyan в сообщении #1620102 писал(а):
Пусть K' покоится собственная длина $L_0=x'_2-x'_1$. Пусть в момент t для K длина есть $L=x_2-x_1$.

Вы прямо в первых двух предложениях умудрились напустить туману. Если события измерения $x_1$ и $x_2$ одновременны в своей системе (в момент $t$) то эти же события в системе $K^\prime$ не одновременны и $L_0$ равно тому что вы написали только потому что у вас в $K^\prime$ объект покоится. Я надеюсь вы это понимаете.

Balasanyan в сообщении #1620102 писал(а):
В чем может быть интерпретация такого результата?

Это означает что $t_2^\prime$ меньше $t_1^\prime$, то есть событие измерения координаты $x_1$ в $K$ в системе покоя объекта, $K^\prime$, происходит позже события измерения координаты $x_2$.

Balasanyan в сообщении #1620102 писал(а):
Например, знак минус также опущен и на Википедии

Ваш сценарий не соответствует тому на что вы ссылаетесь. Здесь объект покоится в $K$. Действительно здесь грязновато и не хватает знака, и надо бы вычитать расстояние пройденное концом 1. Но если они, грубо говоря, держатся за конец 2, то конец 1 у них становится вторым. :)

Давайте что ли запишем чисто:

$\Delta t^\prime = t_2^\prime - t_1^\prime=  -\gamma vL_0/c^2$

Для получения одновременных положений концов необходимо вычесть из $\Delta x^\prime$ расстояние, пройденное концом 1 со скоростью $v$ в течение времени $-\Delta t^\prime$:

$L^\prime = \Delta x^\prime - v(-\Delta t^\prime)$

Дальше без изменений.

HTH

 Профиль  
                  
 
 Re: Лоренцево сокращение
Сообщение28.11.2023, 01:15 


25/12/22
5
lazarius в сообщении #1620121 писал(а):
Я надеюсь вы это понимаете

Да, знаю :)

lazarius в сообщении #1620121 писал(а):
Ваш сценарий не соответствует тому на что вы ссылаетесь. Здесь объект покоится в $K$.

Это, думаю, больше подходит к моему примеру, и тут тоже минуса нет и более того, здесь $t_2 > t_1$ и, как я понимаю, $x_2 > x_1$ (Ахмедов Э.Т. - теория относительности, классическая электродинамика и гравитация). Я не могу найти информацию, из какого принципа или допущения это исходит. Сомневаюсь что это просто ошибка/опечатка, ибо это во многой литературе встречается.
Изображение

 Профиль  
                  
 
 Re: Лоренцево сокращение
Сообщение28.11.2023, 01:29 


27/10/23
78
Balasanyan в сообщении #1620123 писал(а):
Это, думаю, больше подходит к моему примеру, и

Ну ошибся Эмиль Тофикович, с каждым такое бывает. Пошлите ему e-mail и в следующем издании он ошибку исправит.

-

-- 28.11.2023, 01:49 --

Balasanyan в сообщении #1620123 писал(а):
lazarius в сообщении #1620121 писал(а):
Я надеюсь вы это понимаете

Да, знаю :)

Вы тут плакались по поводу плевания ядом. Из-за вашей "шутки" я потерял время.

-

 Профиль  
                  
 
 Re: Лоренцево сокращение
Сообщение28.11.2023, 08:45 


25/12/22
5
lazarius в сообщении #1620129 писал(а):
Вы тут плакались по поводу плевания ядом. Из-за вашей "шутки" я потерял время.

Вы сами в своем мирке придумали, что у меня в K и K' события одновременные и вас за руку никто не тянул писать ответ.

Момент с минусом не только у Ахмедова, и как минимум, вы сами видели это и на вики, и, в целом, встречается часто, в т.ч. в письменных записях лекций.

 Профиль  
                  
 
 Posted automatically
Сообщение28.11.2023, 11:16 
Админ форума


02/02/19
2683
 i  Тема перемещена из форума «Физика» в форум «Помогите решить / разобраться (Ф)»
Причина переноса: темы, в которых нужно что-то объяснить или подсказать в пределах учебных курсов, создаются в этом разделе.


 i  Balasanyan
В правильно оформленной формуле должен быть один знак доллара в начале и один в конце. Посередине не надо. Для набора греческих букв в $\TeX$ существуют команды: \beta - $\beta$, \Delta - $\Delta$. Чтобы узнать код буквы, нажмите на кнопку "$\LaTeX$-помощник" над полем нового сообщения и воспользуйтесь разделом "греческие буквы". Google-запросы типа "бета TeX" тоже прекрасно работают.

 Профиль  
                  
 
 Re: Posted automatically
Сообщение28.11.2023, 12:20 


27/10/23
78
Ende в сообщении #1620164 писал(а):
Причина переноса: темы, в которых нужно что-то объяснить или подсказать в пределах учебных курсов, создаются в этом разделе.

The appeal to explain in the original posting is only a clever disguise to cloak the true intent. That guy needs no help or explanation.

-

 Профиль  
                  
 
 Re: Лоренцево сокращение
Сообщение03.12.2023, 11:32 
Админ форума


02/02/19
2683
 i  Сообщение Vadim32 отделено в Карантин для правки формул и устранения избыточного цитирования.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 10 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group