2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение17.11.2023, 17:12 


27/08/16
10551
kzv в сообщении #1618334 писал(а):
Это конечно не интерференционная картина, но все-таки более сложный рисунок, чем тот, который показан в книге Фейнмана.
Потому что расстояние до экрана и ширина распределения электронов на экране от каждой щели гораздо больше расстояния между щелями.

 Профиль  
                  
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение18.11.2023, 08:48 
Аватара пользователя


11/12/16
14139
уездный город Н
кстати, ТС, ошибся с вычислением экстремумов суммы двух гауссиан.
Там тоже будет критичное значение, при котором одногорбое распределение становится двухорбым.

И это значение тоже выражается красиво:
$a = \frac{l}{\cos(\frac{\pi}{4})}$

 Профиль  
                  
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение18.11.2023, 18:56 
Аватара пользователя


22/07/22

897
EUgeneUS
Как вы это вычислили? (И для прошлого правильного распределения у меня такой же вопрос)

-- 18.11.2023, 19:02 --

Хотя вы правы...

 Профиль  
                  
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение19.11.2023, 12:35 


15/09/20
198
В двумерном случае вероятность распределяется равномерно по окружности. Значит вероятность найти пулю на расстоянии $r$ от щели, обратно пропорционально длине окружности:
$$P(r)\sim\frac{1}{2\pi r}=\frac{1}{2\pi\sqrt{l^2+x^2}}$$

В трехмерном случае вероятность распределяется равномерно по шару. Значит вероятность найти пулю на расстоянии $r$ от щели, обратно пропорционально площади шара:
$$P(r)\sim\frac{1}{4\pi r^2}=\frac{1}{4\pi(l^2+x^2)}$$

Правильно?

 Профиль  
                  
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение19.11.2023, 13:00 


17/10/16
4974
kzv
Но вы ведь ищете вероятность найти пулю на элементе поверхности плоского экрана, а не на элементе поверхности окружности или шара. Возьмите достаточно большое отклонение траектории пули от перпендикуляра и посмотрите, насколько длина/площадь элемента круга/шара меньше соответствующей ему длины/площади элемента плоского экрана. Если бы экран был кругом/шаром с центром в точке щели, то вы были-бы правы.

Только нужно говорить не о вероятности попасть в точку (она всегда нулевая), а о плотности вероятности попасть в некоторый промежуток на экране длиной $dx$, расположенный в окрестности точки $x$. Тогда вероятнось попасть в $dx$ в окрестности $x$ равна произведению плотности вероятности в $x$, умноженной на $dx$.

 Профиль  
                  
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение19.11.2023, 13:54 


27/08/16
10551
kzv в сообщении #1618705 писал(а):
В двумерном случае вероятность распределяется равномерно по окружности.
По какой ещё окружности? Нет никакой окружности.

 Профиль  
                  
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение19.11.2023, 18:40 
Аватара пользователя


11/12/16
14139
уездный город Н
Doctor Boom в сообщении #1618626 писал(а):
Как вы это вычислили? (И для прошлого правильного распределения у меня такой же вопрос)


Для "правильного" распределения - там обычная (хотя и нудная) задача с параметром.
А для двух гауссиан - подобрал в вальфраме. :wink:

 Профиль  
                  
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение19.11.2023, 18:49 


27/08/16
10551
Doctor Boom в сообщении #1618626 писал(а):
Как вы это вычислили?
Достаточно найти координаты точек перегиба у гауссиан.

 Профиль  
                  
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение19.11.2023, 20:33 
Аватара пользователя


22/07/22

897
realeugene в сообщении #1618810 писал(а):
Достаточно найти координаты точек перегиба у гауссиан.

Ага

 Профиль  
                  
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение20.11.2023, 08:18 


15/09/20
198
Вероятность найти пулю - это функция от координаты на экране, она не равна нулю в конкретной точке. В двумерном случае эта функция обратно пропорциональна расстоянию от щели до детектора:
$$P(x)=\frac{P_0}{2\pi\sqrt{l^2+x^2}}$$
Где $P_0$ - коэффициент пропорциональности. Этот коэффициент можно найти.
Плотность вероятности - это вероятность, приходящаяся на единицу длины, она находится по формуле:
$$\rho(x)=\frac{dP}{dx}=-\frac{P_0}{2\pi} x (l^2+x^2)^{-\frac{3}{2}}$$
Если вероятность найти пулю хоть где-нибудь на экране, равна единице, то можно записать условие нормировки и найти коэффициент $P_0$:
$$2\int\limits_{0}^{\infty}{\rho(x)dx}=2\int\limits_{0}^{\infty}{dP}=-\int\limits_{0}^{\infty}{\frac{P_0}{\pi} x (l^2+x^2)^{-\frac{3}{2}}dx}=\frac{P_0}{\pi\sqrt{l^2+x^2}}\bigg|_0^\infty=1$$
О чем тут говорит знак минус, который получается при подстановке пределов, я не знаю. Если минус не учитывать, то находим:
$$P_0=\pi l$$
В итоге, зависимость вероятности от координаты детектора:
$$P(x)=\frac{l}{2\sqrt{l^2+x^2}}$$

 Профиль  
                  
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение20.11.2023, 08:48 


17/10/16
4974
kzv
Ну, как вам будет угодно.

 Профиль  
                  
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение20.11.2023, 08:51 
Аватара пользователя


11/12/16
14139
уездный город Н
sergey zhukov
Понимаю, что есть некоторая усталость от попыток объяснить очевидные вещи.
Но так тоже нельзя :wink:

kzv
Вы написали чуть менее, чем полностью, чушь.

 Профиль  
                  
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение20.11.2023, 10:48 
Заслуженный участник


24/08/12
1117
sergey zhukov, kzv
У меня для плотности в двумерном случае получилось вот что.

$k$ - коеффициент пропорциональности
$l$, $x$, $r$ соответно расстояния: от щели до экрана, на экране по вертикали с центра экрана вверх до точки попадания на экране Q, радиус с щели до точки попадания Q; $r^2 = l^2 + x^2$
$\alpha$ - угол между $r$ и $l$
$ds$ - элемент длины окружности на расстоянии $r$ от щели

Тогда для вероятности $P$ попадания в элементе $ds$ окружности радиусом $r$ будет:

(1) $P = k d\alpha = \frac{k}{r}ds$

Но в окрестности точки попадания Q имеем
(2) $ds = \cos(\alpha)dx = \frac{l}{r}dx$,
и подставляя $ds$ из (2) в (1) получаем

3) $P= k d\alpha = \frac{k}{r}ds = \frac{kl}{r^2}dx = \frac{kl}{l^2 + x^2}dx$

Коеффициент $k$ ненужно определять по-сложному, из (1) и факта что частица обязана появиться где-то на полуокружности после щели очевидно $k = \frac{1}{\pi}$

Итого окончательно имеем:

$P= \frac{l}{\pi(l^2 + x^2)}dx$
или для плотности вероятности $\rho(x)$:
$\rho(x)= \frac{l}{\pi(l^2 + x^2)}$

 Профиль  
                  
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение20.11.2023, 11:35 
Аватара пользователя


11/12/16
14139
уездный город Н
manul91
В целом-то верно.
Но приравнивать конечные и бесконечно малые величины - не комильфо.
Начиная отсюда:
manul91 в сообщении #1618898 писал(а):
(1) $P = k d\alpha = \frac{k}{r}ds$


Должно быть: $d P = k d\alpha = \frac{k}{r}ds$

И заканчивая тут:

manul91 в сообщении #1618898 писал(а):
Итого окончательно имеем:

$P= \frac{l}{\pi(l^2 + x^2)}dx$
или для плотности вероятности $\rho(x)$:
$\rho(x)= \frac{l}{\pi(l^2 + x^2)}$


должно быть
$dP= \frac{l}{\pi(l^2 + x^2)}dx$
$\frac{dP}{dx} = \rho(x)= \frac{l}{\pi(l^2 + x^2)}$

 Профиль  
                  
 
 Re: Фейнман. Опыт с пулеметной стрельбой.
Сообщение20.11.2023, 11:38 
Заслуженный участник


24/08/12
1117
EUgeneUS Да все так, спасибо!

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 50 ]  На страницу Пред.  1, 2, 3, 4  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: horda2501


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group