Это, конечно, скучноватый пример, т.к. тут изоморфизм. Но можно найти и более интересные примеры (ну я не знаю, пусть мы моделируем какое-нибудь сложное пространство функций некоторым более простым и всюду плотным в нем подпространством - тоже вариант).
Мало того, что скучный, так ещё и не о том. Матрицы - не проще операторов, ибо они и есть операторы, да ещё и записанные в конкретных координатах. "Моделировать" (в Вашем смысле) сложное простым, это, например, заменить понятие натуральных чисел, определённое арифметикой второго порядка (
), понятием, определённым примитивно рекурсивной арифметикой (
), которая не может доказать даже всюду определённость функции Аккермана, не говоря уже о более сложных вещах.
Если у Вас нет каких-то специальных целей, то что может заставить Вас, знающего (и принимащего) такие вещи, как ВТФ или теорема Гудстейна, отказаться от них, ограничившись более простой "моделью"?
Какая сила теории "достаточна"?
Позволяющая формализовать всю обычную математику. Надеюсь, смысл словосочетания "обычная математика" сможем принять без уточнений? (учитывая, что теорий, на это претендующих, очень мало)
Разумеется смысл словосочетания "обычная математика" нельзя принять без уточнений. Математика слишком обширна. Кому-то не хватит и теории, в которой принята гипотеза континуума, а кому-то достаточно и такой теории, в которой недоказуемо существование бесконечных множеств.
Прямо точно ничего не хочется добавить или убавить? Вариантов для этого - море.
Типа аксиому выбора на аксиому детерминированности? Нет, это точно не хочется. Вроде все устраивает. А какие есть варианты? Может мне что-то понравится.
Узко мыслите. Я вижу, что ZFC Вам "понравилась" настолько, что Вы практически убедили себя в том, что именно её-то Вы всегда и имели в виду чуть ли не с рождения. Или, по крайней мере, с того момента, как впервые услышали слово "множество". А чем Вам, скажем, NBG не нравится? Это почти то же самое, только плюс понятие "класса", которого в ZFC нет. Или почему не теория типов? Не теория категорий? Почему не мереология?
Самое известное - невыразимость в логике первого порядка аксиомы индукции.
Почему "в логике первого порядка"? В арифметике Пеано же, а не во всей логике первого порядка. В ZFC аксиома индукции - это же обычная теорема про подмножества натуральных чисел. Разве нет?
Нет, именно в логике первого порядка. Теория множеств первого порядка даёт иллюзию доказуемости аксиомы индукции, однако суть остаётся та же самая - индукция осуществляется только по
формулам языка, а должна осуществлятся и по всем предикатам, невыразимым формулами.
Это и есть то содержание, которое теряет любая теория первого порядка сравнительно с теорией второго порядка: возможность применения утверждений к предикатам и функциям, невыразимым формулами языка.