2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1 ... 10, 11, 12, 13, 14, 15, 16 ... 41  След.
 
 Re: Элементарная алгебра для отстающих
Сообщение17.09.2023, 12:03 
Аватара пользователя


01/12/06
760
рм
Dedekind в сообщении #1609738 писал(а):
С самим понятием множества стоит ознакомиться для общего развития, но не более.
electron2501, не слушайте. Взрослые дяди хотят оставить эту игрушку себе.

 Профиль  
                  
 
 Re: Элементарная алгебра для отстающих
Сообщение17.09.2023, 12:21 
Заслуженный участник


23/05/19
1214
gefest_md
Ну а какая в этом жизненная необходимость? Понимание функции как ящика, или как зависимости одной переменной от другой - достаточно для всех школьных задач по математике (и по программированию до кучи). Конечно, вместе с понимание области определения - какие числа можно подавать на вход ящика, а какие нельзя.
А какой смысл в определении через множества? Зачем оно детям, и какие задачи оно поможет им решить?

 Профиль  
                  
 
 Re: Элементарная алгебра для отстающих
Сообщение17.09.2023, 12:49 
Аватара пользователя


01/12/06
760
рм
Dedekind в сообщении #1609770 писал(а):
А какой смысл в определении через множества? Зачем оно детям, и какие задачи оно поможет им решить?
Есть смысл, также как есть смысл в понятии соответствия из школьного определения функции. Но благодаря множеству понятие соответствия можно увидеть не хуже, чем это можно увидеть с помощью ящика, а может и лучше.

 Профиль  
                  
 
 Re: Элементарная алгебра для отстающих
Сообщение17.09.2023, 13:06 
Заслуженный участник


23/05/19
1214
gefest_md
Ну так и в чем же он?

 Профиль  
                  
 
 Re: Элементарная алгебра для отстающих
Сообщение17.09.2023, 13:15 
Аватара пользователя


01/12/06
760
рм
Dedekind в сообщении #1609774 писал(а):
Ну так и в чем же он?
Объект, о котором рассуждают в математике. Во всяком случае мне кажется на каком-то смысле надо остановиться в процессе обучения.

 Профиль  
                  
 
 Re: Элементарная алгебра для отстающих
Сообщение17.09.2023, 19:30 
Заслуженный участник


23/05/19
1214
gefest_md
Но для 7-миклассника эти рассуждения бесполезны, он ни для одной задачи вплоть до 11-го класса их применить не сможет. Так что не стоит грузить людей бесполезной инфой с самого начала.

 Профиль  
                  
 
 Re: Элементарная алгебра для отстающих
Сообщение17.09.2023, 21:19 


25/11/22
288
Здравствуйте! Я кое-как разобралась с этим упражнением. Однако в следующем упражнении снова столкнулась с непониманием. Там тоже $f(x)=x^2$, но предлагается найти ответ для следующих условий, а именно:
д) $f(x-1)=f(x-7)$
То есть, и слева и справа нужно выполнить предписанную условием операцию нахождения функции f для x, которая является в данном случае возведением в квадрат. Получается (если я правильно поняла) выражение $(x-1)^2=(x-7)^2$, то есть при раскрытии скобок $x^2+2=x^2+49$. Но что делать с этим выражением, ведь получается нелепое $x^2-x^2=47$ :roll:

Выше есть ещё проще вроде как пример (но ответа на него не даётся, а я решаю в основном только те, которые с ответами для самопроверки).
г) $f(x-1)=81$. То есть, это выражение $(x-1)^2=81$ и, соответственно, $x^2=80$. Что именно я понимаю не правильно?

 Профиль  
                  
 
 Re: Элементарная алгебра для отстающих
Сообщение17.09.2023, 21:41 
Аватара пользователя


01/12/06
760
рм
electron2501 в сообщении #1610194 писал(а):
Что именно я понимаю не правильно?
Открывание скобок. Если забываете формулу возведения бинома в квадрат, примените дистрибутивность: $(a+b)(a+b)=(a+b)a+(a+b)b=\dots$ В ваших задачах $b<0.$

 Профиль  
                  
 
 Re: Элементарная алгебра для отстающих
Сообщение17.09.2023, 21:49 


05/09/16
12108
electron2501 в сообщении #1610194 писал(а):
Получается (если я правильно поняла) выражение $(x-1)^2=(x-7)^2$, то есть при раскрытии скобок $x^2+2=x^2+49$.

Неправильно раскрыли. Покажите выкладки как раскрывали.

-- 17.09.2023, 21:50 --

electron2501 в сообщении #1610194 писал(а):
То есть, это выражение $(x-1)^2=81$ и, соответственно, $x^2=80$.

Как получается "соответсвенно"?

P.S. Всегда показывайте подробные выкладки. Тогда проще увидеть где у вас проблема. Если вы решаете "в уме", а не пишете подробно решение, ну значит там проблему и ищите, "в уме"...

 Профиль  
                  
 
 Re: Элементарная алгебра для отстающих
Сообщение17.09.2023, 23:35 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora

(Оффтоп)

electron2501 в сообщении #1610194 писал(а):
То есть, это выражение $(x-1)^2=81$ и, соответственно, $x^2=80$.
Если уж следовать такой логике, то $x^2$, скорее, равно $82$.
Ведь $x$ больше, чем $x-1$, значит, и квадрат у него больше.

electron2501, не принимайте это всерьёз! :-)

 Профиль  
                  
 
 Re: Элементарная алгебра для отстающих
Сообщение18.09.2023, 03:08 


25/11/22
288
gefest_md в сообщении #1610200 писал(а):
electron2501 в сообщении #1610194 писал(а):
Что именно я понимаю не правильно?
Открывание скобок. Если забываете формулу возведения бинома в квадрат, примените дистрибутивность: $(a+b)(a+b)=(a+b)a+(a+b)b=\dots$ В ваших задачах $b<0.$


:shock: Странная вещь. Я постоянно сталкиваюсь с тем, что я недопонимаю того, что должна понимать, словно бы пропустила тему. Термин "бином" не встречался ещё. Глянула, это из темы "многочлены", а это две последующие главы. С такими квадратами по типу $(x-1)^2$, вроде тоже не имела ещё дел. Тут пошли повторения темы "свойства степени с натуральным показателем" в последних параграфах, включая текущий. Я подумала, что это подготовка к этим темам последним с многочленами. Ну вот и раскрыла скобки как у степеней на автомате :facepalm:

Однако, здесь что-то не то. $(a+b)(a+b)=(a+b)a+(a+b)b=\dots$ С такими выражениями, вроде, не было ещё тем. (Принцип-то правильно поняла хоть? Проблема только в раскрытии скобок?)

-- 18.09.2023, 03:23 --

Ну, да, так и есть. $(a+b)^2=a^2+ab+b^2$ - бином Ньютона. Такие выражения дальше идут. Как такое может быть? :|

 Профиль  
                  
 
 Re: Элементарная алгебра для отстающих
Сообщение18.09.2023, 03:33 


05/09/16
12108
electron2501 в сообщении #1610236 писал(а):
Ну, да, так и есть. $(a+b)^2=a^2+ab+b^2$ - бином Ньютона.

OMG... Ньютон перевернулся в гробу...
Давайте подставим $a=1,b=1$ Тогда $(a+b)^2=(1+1)^2=2^2=4$
С другой стороны, вы пишете, что $(a+b)^2=a^2+ab+b^2=1^2+1\cdot 1+1^2=1+1+1=3$
Но ведь $4 \ne 3$...

-- 18.09.2023, 03:36 --

electron2501 в сообщении #1610236 писал(а):
Как такое может быть? :|

Да уж, удивительное дело...

 Профиль  
                  
 
 Re: Элементарная алгебра для отстающих
Сообщение18.09.2023, 14:22 


25/11/22
288
Весьма запутанно, всё же, согласитесь. Глазами новичка, то есть. Исходное выражение одно и то же - $(a+b)^2$. А действия и результаты разные. Извиняюсь за очередной дурацкий вопрос, но

gefest_md в сообщении #1610200 писал(а):
примените дистрибутивность: $(a+b)(a+b)=(a+b)a+(a+b)b=\dots$ В ваших задачах $b<0.$


Что значит уточнение "в ваших задачах b<0"? Я впервые с таким выражением столкнулась. Ранее распределительный закон был только на примере $(ab\cdotac)\cdot(ac)=a(bc)$ Таких "двойняшек" ни разу не было. Возможно, опытные люди скажут "так это же элементарно, как вы сами не видите"! Однако я не обладаю особой проницательностью и как средний ученик усваиваю знания только на конкретных примерах. А в программе не было "ребята, выражения типа $(a+b)(a+b)=(a+b)a+(a+b)b=\dots$ преобразовываются вот так вот потому что..." Не совсем правильно по отношению к ученикам со способностями не ахти какими, всё-таки :-) Ну, ладно, теперь-то я буду знать где собака зарыта! 8-)

-- 18.09.2023, 14:31 --

Но это лирика. А теперь вот конкретный пример. $(x-1)^2=81$ Получается $(x-1)-(x-1)x=81$ и далее $x-1-x^2+x=81$, так? Далее $-x^2+2x-1=81$. Что делать с этим выражением? (Либо $(x-1)(-1)-x^2+x=-x+1-x^2+x$ и $1-x^2=81$ Ни одно из этих выражений не решается, вроде :roll: Где ошибка теперь?

 Профиль  
                  
 
 Re: Элементарная алгебра для отстающих
Сообщение18.09.2023, 14:33 


05/09/16
12108
electron2501 в сообщении #1610281 писал(а):
Однако я не обладаю особой проницательностью

Тогда вам надо погуглить "формулы сокращенного умножения" и выучить их наизусть, как вы учили таблицу умножения до 10.
Вот они:
Изображение
Это формулы, в дальнейшем, будут вам нужны постоянно.

 Профиль  
                  
 
 Re: Элементарная алгебра для отстающих
Сообщение18.09.2023, 14:40 


25/11/22
288
Формулы я, конечно, выучу. Но вот я применила формулу указанную Гефестом ранее, которая $(a+b)^2=(a+b)a+(a+b)b$. Всё равно не решается :-(

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 615 ]  На страницу Пред.  1 ... 10, 11, 12, 13, 14, 15, 16 ... 41  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Cynic, dgwuqtj


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group