2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8 ... 12  След.
 
 
Сообщение20.11.2008, 14:14 
Заблокирован


26/03/07

2412
VladTK в сообщении #159764 писал(а):
Цитата:
Такие пространства необходимо имеют сингулярности. Эти сингулярности - источники этого поля.


Не понял - какие сингулярности? Показано, что в этих решениях уравнений Эйнштейна нет сингулярностей, а кривизна есть везде и всегда
Давайте уточним насчет "сингулярностей". Метрика Тауба :

$$ ds^2=\frac{dt^2}{U}-(2l)^2U(d\psi+\cos{\theta}d\varphi)^2-(t^2+l^2)(d\theta^2+\sin^2{\theta}d\varphi^2)$$,

где $\psi,\theta,\varphi$ - углы Эйлера,

$$U=\frac{2(mt+l^2)}{t^2+l^2}-1$$,

$m,l$ - положительные константы. Эта метрика имеет особенность при $t=t_{\pm}=(m\pm (m^2+l^2)^{1/2})$. Отвечающее ей пространство содержит компактную область $t_{-}<t<t_{+}$, в которой есть времениподобные и изотропные геодезические, которые "захвачены" в ней, т.е. остаются все время внутри неё, и неполны. Это пространство по определению сингулярно, несмотря на отсутствие сингулярностей как скалярных полиномов кривизны, так и самого тензора кривизны (Хокинг - Эллис 1977).

Добавлено спустя 6 минут 52 секунды:

VladTK в сообщении #160149 писал(а):
Что такое "островная система с кручением"?
В ней присутствует кручение и отсутствует материя на бесконечности.
VladTK в сообщении #160149 писал(а):
Объясните, что Вы хотите сказать? Псевдотензоры - это прямое следствие ОТО.
Они ОТО не нужны : Полная энергия $\equiv$ энергия гравитационного поля является одним из интегралов её уравнений. Т.е. она возникает естественным образом после интегрирования.
VladTK в сообщении #160149 писал(а):
А подробнее можно? Как была рассчитана эта самая полная гравитационная энергия?
Только что было отмечено - в результате интегрирования уравнений ОТО, как один из первых интегралов уравнений.

 Профиль  
                  
 
 
Сообщение20.11.2008, 14:50 
Заслуженный участник
Аватара пользователя


28/09/06
10985
pc20b писал(а):
Но всё же следование традиции - соотносить ГП с ньютоновым ускорением $g$, т.е. со связностями, с первыми производными метрики, это просто дань традиции в ущерб теории.

Нет, ущерб теории - это называть "гравитацией" объект, к силам тяготения прямого отношения не имеющий.

pc20b писал(а):
Причем, цена, которую приходится платить - непонимание даже специалистами универсального инвариантного характера гравитационного поля, тождественного геометрии (кривизне) и отображающего на неё все остальные "физические" поля - слишком велика : складывается ошибочное представление. что ГП можно уничтожить в лифте (в свободно падающей по геодезической системе отсчета), что, кстати, справедливо лишь приближенно;

Вы сейчас заплатили свою цену, продемонстрировав непонимание того, что в падающем лифте гравитационное поле можно уничтожить с точностью и не только локально (если это, например, поле от бесконечной тяготеющей плоскости).

pc20b писал(а):
Конечно же объект, описывающий ГП, должен быть инвариантен и иметь максимальный ранг. Это - тензор кривизны.

Эти идеи ни на чём не основаны. Конечно же тензор кривизны - объективная вещь, независимая от выбора СО. Но он не есть "гравитация" как раз потому, что гравитация - это вещь, зависимая от СО.

pc20b писал(а):
Если пространство с кручением, что плюс тензор кручения.

В ОТО нет кручения.

Добавлено спустя 17 минут 50 секунд:

VladTK писал(а):
А с чего вдруг ассимтотика бывает "корявой", "хорошей" или еще какой? Как Вы определяете "качество" ассимптотики?

Это не я определяю, а тот, кто хочет посчитать массу объекта, границы которого уходят в бесконечность. Нужно позаботиться не только о том, чтобы на бесконечности метрика была лоренцевой, но и о том, чтобы часть массы не оказалась в бесконечности.

VladTK писал(а):
Значения глобальных (внутренних) характеристик системы зависят от выбора системы координат (внешней воли наблюдателя)? Осталось тока ахать...

Что будет и что не будет входить в "систему" определённо зависит от выбора наблюдателя.

 Профиль  
                  
 
 
Сообщение20.11.2008, 15:40 
Заблокирован


26/03/07

2412
epros в сообщении #160183 писал(а):
pc20b писал(а):
Но всё же следование традиции - соотносить ГП с ньютоновым ускорением , т.е. со связностями, с первыми производными метрики, это просто дань традиции в ущерб теории.

Нет, ущерб теории - это называть "гравитацией" объект, к силам тяготения прямого отношения не имеющий.
Извините, но это недоразумение - считать источником тяготения лишь ньютоновский потенциал $\varphi$. В ньютоновской механике ускорение частицы определяется градиентом этого потенциала, а относительное ускорение двух частиц, находящихся на расстоянии $Z^{\mu}$, вторыми производными ньютонова потенциала, $\varphi_{;\mu;\nu}Z^{\nu}$. В ОТО это относительное ускорение описывается уже с помощью тензора кривизны (Хокинг - Эллис 1977) :

$$ \varphi_{;\mu;\nu} \sim R_{\mu\alpha\nu\beta}u^{\alpha}u^{\beta}$$.

epros в сообщении #160183 писал(а):
В ОТО нет кручения.


Это лишь в одном из вариантов ОТО - с симметричной связностью. Но связность не обязательно согласована с метрикой. Тогда объект

$$S^{\alpha}_{\mu\nu} = \Gamma^{\alpha}_{\mu\nu}-\Gamma^{\alpha}_{\nu\mu}$$

называется тензором кручения (Хокинг-Эллис 1977). Получаем ОТО с кручением.

 Профиль  
                  
 
 
Сообщение20.11.2008, 16:07 


16/03/07
827
Цитата:
...Это пространство по определению сингулярно,...


Очевидно сингулярность понимается Вами в каком-то космологическом смысле? Кроме того нет никаких гарантий, что не существует других решений подобных Таубу. В любом случае, материальных источников в пространстве Тауба нет (как минимум на протяжении некоторого времени :) ). Поэтому утверждаемая Вами связь кривизны с материей поставлена под сомнение.

Цитата:
Они ОТО не нужны : Полная энергия энергия гравитационного поля является одним из интегралов её уравнений. Т.е. она возникает естественным образом после интегрирования.


Очень интересно. А не покажите на какой-нибудь сравнительно простой метрике (типа Шварцшильда) как это происходит?

 Профиль  
                  
 
 
Сообщение20.11.2008, 18:08 
Заслуженный участник
Аватара пользователя


30/01/06
72407
VladTK в сообщении #160149 писал(а):
Согласен. Но я считаю, что после чего-нибудь типа ЛЛ2 или "Гравитации" МТУ Фока следует прочесть обязательно.

Почему? Какие концепции там изложены? Я бы после МТУ (must) рекомендовал Пенроуза и Иваненко. Синга.

Добавлено спустя 1 минуту 35 секунд:

pc20b в сообщении #160220 писал(а):
Это лишь в одном из вариантов ОТО - с симметричной связностью... Получаем ОТО с кручением.

Увы, "ОТО с кручением" - это не вариант ОТО. Это вариант расширения ОТО. И даже не один вариант, потому что для кручения не сформулировано динамических уравнений.

 Профиль  
                  
 
 
Сообщение20.11.2008, 20:58 


16/03/07
827
Цитата:
Почему? Какие концепции там изложены? Я бы после МТУ (must) рекомендовал Пенроуза и Иваненко. Синга.


Фока нужно читать уже ради его четвертой главы. Ковариантизация СТО, с моей точки зрения, есть очень плодотворная концепция. Как пример, мои "опусы" строятся на этой концепции :)
Пенроуз математик - с ним трудно. Иваненко безусловно must (даже не взирая на реакцию Фейнмана на Иваненко). Синг силен своей мировой функцией, но при чтении меня не покидало ощущение какой-то "тупиковости", "завершенности".

Цитата:
...И даже не один вариант, потому что для кручения не сформулировано динамических уравнений.


Разве, по крайней мере, один из вариантов обобщения ОТО - калибровочная теория гравитации на основе группы Пуанкаре не задает уравнений на кручение?

 Профиль  
                  
 
 
Сообщение20.11.2008, 23:19 
Заслуженный участник
Аватара пользователя


30/01/06
72407
VladTK в сообщении #160299 писал(а):
Фока нужно читать уже ради его четвертой главы. Ковариантизация СТО, с моей точки зрения, есть очень плодотворная концепция.

Достаточно прочитать ковариантизацию ньютоновской механики в МТУ.

VladTK в сообщении #160299 писал(а):
Пенроуз математик - с ним трудно.

Напротив, он даёт очень ясный физический смысл ряду конструкций, и расширяет кругозор, показывая, что теория - это не только ДУЧП, а следует помнить ещё и покрытии пространства картами, и о глобальной топологии. Кстати, этого не хватает pc20b (среди прочего, чего ему не хватает).

VladTK в сообщении #160299 писал(а):
Иваненко безусловно must (даже не взирая на реакцию Фейнмана на Иваненко).

Что за реакция?

VladTK в сообщении #160299 писал(а):
Разве, по крайней мере, один из вариантов обобщения ОТО - калибровочная теория гравитации на основе группы Пуанкаре не задает уравнений на кручение?

Не в курсе. А откуда там появляется эта динамика?

 Профиль  
                  
 
 
Сообщение20.11.2008, 23:27 
Заблокирован


26/03/07

2412
VladTK в сообщении #160227 писал(а):
Цитата:
Они ОТО не нужны : Полная энергия энергия гравитационного поля является одним из интегралов её уравнений. Т.е. она возникает естественным образом после интегрирования.


Очень интересно. А не покажите на какой-нибудь сравнительно простой метрике (типа Шварцшильда) как это происходит?
Пожалуйста. Попробуем на метрике Шварцшильда.

Уравнения центрально - симметричного статического поля (ЛЛ2) :

(1) $$\kappa T^0_0=\frac{1}{r^2}(1-e^{-\lambda}(1-\lambda^{'}r))$$,

(2) $$\kappa T^1_1=\frac{1}{r^2}(1-e^{-\lambda}(1+\nu^{'}r))$$.

Здесь постоянная Эйнштейна $$\kappa=\frac{8\pi k}{c^4}$$. В пустоте левые части в (2), (3) равны нулю. Вычитая из (1) (2), получаем

$$\nu=-\lambda$$.

Уравнение (1), если его записать в виде

$$(r(1-e^{-\lambda}))^{'}=0$$,

интегрируется :

(3) $$r(1-e^{-\lambda})= C$$,

где $C $ - константа интегрирования - первый интеграл уравнений гравитационного поля.

Для выяснения его смысла заметим, что решение уравнений (1), (2) :

(4) $$e^{\nu}=e^{-\lambda}=1-\frac{C}{r}$$,-

сингулярно в точке $r=0$. Следовательно, в точке $r=0$ находится точечный источник данного гравитационного поля. Т.к. по определению компонента $T^0_0$ тензора энергии-импульса материи имеет смысл плотности её энергии $\varepsilon$, а интеграл от неё по всему пространству - полной гравитационной энергии

(5) $$E=m_0c^2 =\int_{V}\varepsilon dV$$,

то, учитывая, что источник поля точечный, следовательно, его плотность выражается через трехмерную $\delta$ - функцию Дирака, т.е.

(6) $$\varepsilon =E\delta^{(3)}(r)$$, $$\int_V\delta^{(3)}dV=1$$,

а элемент объема $dV=4\pi r^2dr$, из (1), (3)-(6) получаем :

$$ \kappa E=4\pi r(1-e^{-\lambda})=4\pi C$$,

откуда следует и значение константы интегрирования $C$, которая оказывается точно определенной и пропорциональной полной гравитационной энергии в данном случае точечной массы $m_0$ :

(7) $$C =\frac{\kappa E}{4\pi}=\frac{2km_0}{c^2} = r_g$$, -

и равной т.н. гравитационному радиусу $r_g$. А сама масса (энергия покоя) точечной частицы - равной полной энергии гравитационного поля всего внешнего вакуумного пространства этого точечного источника.**

** А если решить уравнения Эйнштейна для внутреннего мира этой массы $m_0$, уже не точечной, то она же окажется равной и полной гравитационной энергии внутреннего мира в месте расположения этой частицы.

 Профиль  
                  
 
 
Сообщение20.11.2008, 23:55 
Заслуженный участник
Аватара пользователя


23/07/05
17991
Москва
epros в сообщении #160183 писал(а):
Это не я определяю, а тот, кто хочет посчитать массу объекта, границы которого уходят в бесконечность. Нужно позаботиться не только о том, чтобы на бесконечности метрика была лоренцевой, но и о том, чтобы часть массы не оказалась в бесконечности.


Это аналог условия замкнутости системы. Хорошо известно, что энергия системы определена тем лучше, чем ближе система к замкнутой.

И псевдотензор эгергии-импульса в этом случае ведёт себя вполне прилично, позволяя определить интегральные сохраняющиеся величины, включая вектор 4-импульса и тензор 4-момента импульса. Эти величины являются вектором и тензором относительно преобразований, переходящих в асимптотически плоской области в преобразования Лоренца.

 Профиль  
                  
 
 
Сообщение20.11.2008, 23:55 
Заблокирован


26/03/07

2412
VladTK в сообщении #160227 писал(а):
Очевидно сингулярность понимается Вами в каком-то космологическом смысле? Кроме того нет никаких гарантий, что не существует других решений подобных Таубу. В любом случае, материальных источников в пространстве Тауба нет (как минимум на протяжении некоторого времени Smile ). Поэтому утверждаемая Вами связь кривизны с материей поставлена под сомнение.
Нет. Никаких сомнений нет. У вакуумного поля Тауба есть источник. Это видно по тому, что у метрики его существует особенность на двух горизонтах $t_{-}$ и $t_{+}$, а также на бесконечности во времени***. Никто эти особенности топологически строго не исследовал.

***Грубо говоря, это может означать, к примеру, что данное гравитационное поле с компактной регулярной областью кто-то "выплюнул".

 Профиль  
                  
 
 
Сообщение21.11.2008, 07:56 


16/03/07
827
Цитата:
Достаточно прочитать ковариантизацию ньютоновской механики в МТУ.


Фок мне больше нравиться. Еще мне нравиться Фадеев. Я всегда удивлялся: как математик может писать о физике лучше чем сами физики :)

Цитата:
Что за реакция?


Я читал (по моему в предисловии к "Фейнмановским лекциям по гравитации") об эпизоде с разочарованием Фейнмана Варшавской конференцией по гравитации 1962 года и его критикой докладов участников, среди которых был и Иваненко.

Цитата:
Не в курсе. А откуда там появляется эта динамика?


Локализация калибровочной инвариантности относительно подгруппы трансляций приводит к Эйнштейновской ОТО (после геометризации теории), а инвариантность относительно подгруппы Лоренца к динамике кручения. Подробней можно глянуть в третьей главе M Blagojevic Gravitation and gauge symmetries.

Цитата:
...а элемент объема $ dV=4 \pi r^2 dr $, из (1), (3)-(6) получаем : ...


C элементом объема не напутали?

Цитата:
...И псевдотензор эгергии-импульса в этом случае ведёт себя вполне прилично, позволяя определить интегральные сохраняющиеся величины, включая вектор 4-импульса и тензор 4-момента импульса...


Т.е. Вы можете показать все 10 законов сохранения для того же Шварцшильда? Даже с учетом того, что пространство Шварцшильда обладает кажись только 6 Киллинговыми векторами из 10?

Цитата:
Нет. Никаких сомнений нет. У вакуумного поля Тауба есть источник...


Возьмем момент времени $ t=\frac {t_{-}+t_{+}} {2} $. Где находится источник поля в этот момент?

 Профиль  
                  
 
 
Сообщение21.11.2008, 09:01 
Заблокирован


26/03/07

2412
VladTK в сообщении #160401 писал(а):
Цитата:
Нет. Никаких сомнений нет. У вакуумного поля Тауба есть источник...


Возьмем момент времени $ t=\frac {t_{-}+t_{+}} {2} $. Где находится источник поля в этот момент?
Уже было отмечено, что точного топологического анализа пары метрика Тауба - многообразие скорее всего не проводилось. Но пространство, отвечающее приведенной метрике Тауба, лишь часть полного пространства. Т.е. метрика имеет расширение, в пространстве которого и лежит интересующий Вас источник. В интересующий Вас момент времени в данном куске пространства этот источник уже не проявляется (он был в $t_{-}$ и при $t\to -\infty$) и ещё не проявляется (он будет в $t_{+}$ и при $t\to\infty$). Где он находится? Очевидно, в пространственно-подобной области, данной метрикой не описываемой (надо её слегка преобразовать). Я этим не занимался. Если есть желание, можете сами попробовать попробовать.
VladTK в сообщении #160401 писал(а):
Цитата:
...а элемент объема $ dV=4 \pi r^2 dr $, из (1), (3)-(6) получаем : ...


C элементом объема не напутали?
Нет, всё в ажуре.

 Профиль  
                  
 
 
Сообщение21.11.2008, 11:41 
Заслуженный участник
Аватара пользователя


28/09/06
10985
pc20b писал(а):
epros в сообщении #160183 писал(а):
Нет, ущерб теории - это называть "гравитацией" объект, к силам тяготения прямого отношения не имеющий.
Извините, но это недоразумение - считать источником тяготения лишь ньютоновский потенциал $\varphi$. В ньютоновской механике ускорение частицы определяется градиентом этого потенциала, а относительное ускорение двух частиц, находящихся на расстоянии $Z^{\mu}$, вторыми производными ньютонова потенциала, $\varphi_{;\mu;\nu}Z^{\nu}$. В ОТО это относительное ускорение описывается уже с помощью тензора кривизны (Хокинг - Эллис 1977) :

$$ \varphi_{;\mu;\nu} \sim R_{\mu\alpha\nu\beta}u^{\alpha}u^{\beta}$$.

Я говорил не об "источнике тяготения" о самом тяготении. Не забывайте, что тяготение - это сила. Так всегда было и никто этого не отменял.

pc20b писал(а):
epros в сообщении #160183 писал(а):
В ОТО нет кручения.

Это лишь в одном из вариантов ОТО - с симметричной связностью. Но связность не обязательно согласована с метрикой. Тогда объект

$$S^{\alpha}_{\mu\nu} = \Gamma^{\alpha}_{\mu\nu}-\Gamma^{\alpha}_{\nu\mu}$$

называется тензором кручения (Хокинг-Эллис 1977). Получаем ОТО с кручением.

Я знаю что такое тензор кручения. Munin Вам правильно ответил, что кручение - это не вариант, а расширение ОТО.

 Профиль  
                  
 
 
Сообщение21.11.2008, 12:36 
Заблокирован


26/03/07

2412
epros в сообщении #160467 писал(а):
кручение - это не вариант, а расширение ОТО.

Это ОТО 1919 г. Архаика. За истекшее время она немного подросла, и сейчас ОТО, объединенная идеей геометризации физических полей, включает в себя любые пространства - любых размерностей, сигнатур, связностей. (В принципе, и любых метризаций, скажем, финслерову геометрию тоже можно рассматривать в рамках ОТО).

Добавлено спустя 10 минут 25 секунд:

epros в сообщении #160467 писал(а):
pc20b писал(а):
epros в сообщении #160183 писал(а):
Нет, ущерб теории - это называть "гравитацией" объект, к силам тяготения прямого отношения не имеющий.
Извините, но это недоразумение - считать источником тяготения лишь ньютоновский потенциал $\varphi$. В ньютоновской механике ускорение частицы определяется градиентом этого потенциала, а относительное ускорение двух частиц, находящихся на расстоянии $Z^{\mu}$, вторыми производными ньютонова потенциала, $\varphi_{;\mu;\nu}Z^{\nu}$. В ОТО это относительное ускорение описывается уже с помощью тензора кривизны (Хокинг - Эллис 1977) :

$$ \varphi_{;\mu;\nu} \sim R_{\mu\alpha\nu\beta}u^{\alpha}u^{\beta}$$.

Я говорил не об "источнике тяготения" о самом тяготении. Не забывайте, что тяготение - это сила. Так всегда было и никто этого не отменял.
Это тоже архаика. Тяготеет всё (гравитационное взаимодействие носит фокусирующий характер). И силы все - гравитационные. Например, приливная сила в ньютоновом смысле :

$$f_{\mu}=\varphi_{;\mu;\nu}Z^{\nu}$$.

Она же в исполнении ОТО :

$$f_{\mu}=R_{\mu\alpha\nu\beta}u^{\alpha}u^{\beta}Z^{\nu}$$.

Т.о., источником любой "силы тяготения" является тензор кривизны.

 Профиль  
                  
 
 
Сообщение21.11.2008, 12:52 
Заслуженный участник
Аватара пользователя


23/07/05
17991
Москва
VladTK в сообщении #160401 писал(а):
Т.е. Вы можете показать все 10 законов сохранения для того же Шварцшильда? Даже с учетом того, что пространство Шварцшильда обладает кажись только 6 Киллинговыми векторами из 10?


Речь ведь идёт об асимптотически плоской области. Там просто пространство Минковского с высокой точностью. Нужно ещё точнее - уходите ещё дальше в асимптотически плоскую область.

Требование рассматривать систему в асимптотически плоской области - это требование замкнутости системы, без чего энергия, импульс и момент импульса системы плохо определяются и в классической механике.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 177 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8 ... 12  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group