2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5, 6  След.
 
 Небольшое замечание
Сообщение15.05.2023, 13:22 


17/06/18
421
Предположим, что имеются такие натуральные числа разной четности $z$ и $y$, такие, что $z^3-y^3=x^3$ (1), где $x$ натуральное нечетное число.
Тогда (1) можно переписать в виде: $x^3=(z-y)((z-y)^2+3zy)$ (1.1); (Здесь показатель степени может быть любым нечетным простым числом).
Очевидно, что разность степеней чисел $z$ и $y$, при любом другом показателе степени, будет содержать в составе множителей число $(z-y)$, при этом для всех таких разностей степеней, (1.1) будет невыполнимым. Отсюда следует, что число $(z-y)$ не может быть частью примитивного решения равенства (1.1).

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение15.05.2023, 13:34 
Заслуженный участник
Аватара пользователя


16/07/14
9149
Цюрих
Первый неопределенный термин: "разность степеней при показателе степени". Напишите определение.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение15.05.2023, 13:45 


08/10/22
24
Отвечать лень, но отвечу. Известно, что $ z-y = a^n $ и $ z-x = b^n $, а $ x+y = c^n $ и что?.
Мои замечания написаны для случая когда $ z $ делится на степень.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение15.05.2023, 15:08 


17/06/18
421
mihaild
Вы так неожиданно исчезли, что я уж было подумал - Вы от меня устали.
По Вашему вопросу: возможно лучше было бы сказать "...разность степеней с любым другим показателем", имелось ввиду $z^5-y^5; z^7-y^7$ и т.д.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение15.05.2023, 15:23 
Заслуженный участник
Аватара пользователя


16/07/14
9149
Цюрих
dick в сообщении #1593960 писал(а):
Очевидно, что разность степеней чисел $z$ и $y$, при любом другом показателе степени, будет содержать в составе множителей число $(z-y)$, при этом для всех таких разностей
Т.е. по-русски это звучит как "$z^n - y^n$ делится на $z - y$"?
dick в сообщении #1593960 писал(а):
при этом для всех таких разностей степеней, (1.1) будет невыполнимым
Что значит "равенство невыполнимо для разности степеней"?
dick в сообщении #1593960 писал(а):
число $(z-y)$ не может быть частью примитивного решения равенства
Что значит "число является часть решения равенства"?

Пишите и формулируйте нормально, чтобы можно было восстановить кванторы и кто на ком стоял, Вы же умеете.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение15.05.2023, 18:47 
Заслуженный участник
Аватара пользователя


01/09/13
4656
dick в сообщении #1593960 писал(а):
натуральные числа разной четности

А это где-то используется?

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение15.05.2023, 21:52 


17/06/18
421
mihaild в сообщении #1593978 писал(а):
Что значит "равенство невыполнимо для разности степеней"?

Это значит, что разность степеней $z$ и $y$ с показателем $n$ больше 3, не может быть равной степени натурального числа с тем же показателем.
mihaild в сообщении #1593978 писал(а):
Что значит "число является часть решения равенства"?

Это значит, что наличие или отсутствие решения для (1.1) зависит от того, каким будет число $(z-y)$.

Geen
Разная четность $z$ и $y$ обусловлена тем, что мы говорим здесь о нечетных показателях степени, а в этом случае старший член тройки решения может быть как нечетным, так и четным.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение16.05.2023, 00:21 
Заслуженный участник
Аватара пользователя


16/07/14
9149
Цюрих
dick в сообщении #1594029 писал(а):
Это значит, что разность степеней $z$ и $y$ с показателем $n$ больше 3, не может быть равной степени натурального числа с тем же показателем.
В это надо внимательно вглядываться, но допустим что действительно известно, что если $x^3 + y^3 = z^3$ для каких-то $x,y,z$, то уравнение $p^n + y^n = z^n$ неразрешимо относительно $p$ и $n$ в натуральных числах с условием $n > 3$.
dick в сообщении #1594029 писал(а):
Это значит, что наличие или отсутствие решения для (1.1) зависит от того, каким будет число $(z-y)$.
Это некорректная формулировка, потому что если $x, y, z$ это решение (1.1), то его разрешимость уже ни от чего не зависит, оно разрешимо.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение16.05.2023, 13:32 
Аватара пользователя


05/06/08
477
dick в сообщении #1593960 писал(а):
$x^3=(z-y)((z-y)^2+3zy)$ (1.1)

А почему вы не используете более простое выражение для нечетных степеней?
${x^{2n + 1}} = \left( {z - y} \right)\left( {{y^{2n}} + {y^{2n - 1}}z... + {z^{2n}}} \right)$


PS По моему, доказано, что в общем виде ВТФ нельзя доказать с помощью алгебраических преобразований, в стиле доказательства для 4й и 3й степени.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение16.05.2023, 14:30 


13/05/16
362
Москва
Korovin в сообщении #1593965 писал(а):
Отвечать лень, но отвечу. Известно, что $ z-y = a^n $ и $ z-x = b^n $, а $ x+y = c^n $ и что?.
Мои замечания написаны для случая когда $ z $ делится на степень.

Вы нигде не ошиблись? Должно быть $x+y=\frac{c^n}{n}$

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение17.05.2023, 10:43 
Аватара пользователя


05/06/08
477
Antoshka в сообщении #1594102 писал(а):
Korovin в сообщении #1593965 писал(а):
Отвечать лень, но отвечу. Известно, что $ z-y = a^n $ и $ z-x = b^n $, а $ x+y = c^n $ и что?.
Мои замечания написаны для случая когда $ z $ делится на степень.

Вы нигде не ошиблись? Должно быть $x+y=\frac{c^n}{n}$

Ни то, ни другое. Скобка может быть степнью n.
Но ни c, а меожителя с. Если с имеет множитель n, то и вовсе нт.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение17.05.2023, 17:20 
Аватара пользователя


05/06/08
477
Antoshka в сообщении #1594102 писал(а):
Korovin в сообщении #1593965 писал(а):
Отвечать лень, но отвечу. Известно, что $ z-y = a^n $ и $ z-x = b^n $, а $ x+y = c^n $ и что?.
Мои замечания написаны для случая когда $ z $ делится на степень.

Вы нигде не ошиблись? Должно быть $x+y=\frac{c^n}{n}$

Не ошибся он.
$ z-y = a^n $ и $ z-x = b^n $, а $ x+y = c^n $ - верно.
Как варианты:
2. $ z-y = n^{n-1} a^n $ и $ z-x = b^n $, а $ x+y = c^n $
3. $ z-y = a^n $ и $ z-x =  n^{n-1}b^n $, а $ x+y = c^n $
4. $ z-y = a^n $ и $ z-x =  b^n $, а $ x+y = n^{n-1}c^n $
При этом степень множетеля $n^{n-1}$ $n-1$ надо еще доказать. Неизвестно зачем.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение19.05.2023, 13:02 


17/06/18
421
mihaild
Согласен, скажем иначе: во время поиска решения логично было бы сосредоточить внимание на второй скобке разложения (1.1).
Действительно, никто не будет сомневаться в том, что разница двух чисел разной четности, одно из которых делится на 3, может дать любое наперед заданное число, в том числе кубы с нечетным основанием, которые нужны нам для ВТФ с показателем 3. Если эти два числа будут соседними, первая скобка вовсе исчезнет. Это я имел ввиду, когда говорил что $(z-y)$ не может быть частью решения, то есть частично или целиком входить в тройку $x,y,z$. А вот получить куб из второй скобки - это проблема.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение19.05.2023, 13:39 
Заслуженный участник
Аватара пользователя


16/07/14
9149
Цюрих
dick в сообщении #1594433 писал(а):
Если эти два числа будут соседними, первая скобка вовсе исчезнет.
Ну точнее будет равна $1$.
Но это Вы максимум докажете, что система $$\begin{cases} x^3 + y^3 = z^3 \\ z - y = 1\end{cases}$$ не имеет решений.

Что значит "число не может быть частью решения" - загадка. Что число $z - y$ не может быть равно никакому из $x, y, z$ - вроде очевидно.
В общем всё еще непонятно, что же Вы утверждаете.

 Профиль  
                  
 
 Re: Небольшое замечание
Сообщение19.05.2023, 21:30 


17/06/18
421
Я же сказал
dick в сообщении #1594433 писал(а):
не может быть частью решения, то есть частично или целиком входить в тройку $x,y,z$

Число $(z-y)$ это куб, основание которого является частью числа $x$, а $(z-y)$ целиком является частью числа $x^3$, если конечно $(z-y)$ больше единицы. В этом случае $(z-y)$ это часть решения, несмотря на то, что $(z-y)$ не имеет отношения к $z$ и $y$. Вы все это знаете не хуже меня. Согласен, что выразился неудачно.
Мне вот что интересно, если я правильно понимаю, Вы не соглашаетесь с тем что все возможные $(z-y)$, в случае выбора $(z-y)=1$ для примитивного решения, относятся к непримитивным решениям, независимо от того будет ли найдено решение для (1), или будет доказано что решения не существует. Но если будет доказано что $(z-y)=1$ это единственный вариант $(z-y)$ для примитивного решения, Вы согласитесь, что достаточно рассмотреть $(z-y)=1$ ?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 84 ]  На страницу 1, 2, 3, 4, 5, 6  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group