Что Вы имеете в виду под тем, что это факт более глубокий, чем кажется на первый взгляд?
Я поделюсь своим представлением, просто имейте в виду, что я, как и Вы, тоже нахожусь в процессе обучения, поэтому не факт, что я прав. К тому же у меня слегка специфический взгляд на математику, так что читайте на свой страх и риск))
Я сам год назад изучал алгебру, и мне понятна природа многих Ваших затруднений (т.к. я сам сталкивался с многими из них).
Мой основной тезис в том, что,
возможно, не стоит сильно серьезно относиться к той структуре определений и теорем, которые Вы видите в учебнике алгебры. Просто выглядит так, что Вы крайне скурпулезно изучаете математику, вот я и решил написать - вдруг сообщу хорошую новость (о том, что скурпулезность может быть и не обязательна).
Приведу пару примеров. Я помню, как я читал первый или второй параграф у Винберга. Ну и там была теорема о том, что композиция гомоморфизмов групп - тоже гомоморфизм. Я ее честно доказал: рассмотрел композицию, взял произвольную пару элементов из первой группы, написал эту строчку, в которой надо пользоваться промежуточными гомоморфизмами, ну и в конце концов доказал, что композиция - тоже гомоморфизм. Надо было это делать? Я считаю, что нет. Группы - это то же самое, что и группоиды с одним объектом (
группоидами называют категории, где все стрелки обратимы). А гомоморфизмы групп = функторы между этими группоидами. Композиция двух функторов - это тоже функтор. И этот факт поинтереснее, чем композиция каких-то там гомоморфизмов групп. Вот и все, получили искомое доказательство.
Я специально начал с этого примера, чтобы показать, в насколько примитивных ситуациях теория категорий умудряется работать.
И таких примеров миллион.
Винберг, например, в пятом параграфе первой главы строил классы вычетов, на мой взгляд, крайне плохим способом. Он брал
, рассматривал на нем понятно какое отношение эквивалентности, затем надо было доказать, что фактормножество по этому отношению является коммутативным, ассоциативным кольцом с единицей. Т.е. доказать 4 для абелевой группы + 1 дистрибутивность + 3 для умножения (коммутативность, ассоциативность и единица) утверждений, хотя делать это совершенно необязательно. Всего лишь достаточно вспомнить, что при конгруэнции факторсистема наследует все алгебраические свойства первоначальной системы (в данном случае
) и все. 8 утверждений доказывать не обязательно.
Еще можно отметить просто массу теорем из линейно алгебры про матрицы, которые доказываются гораздо проще, если знать про их связь с линейными операторами. Ну, допустим, теорема о том, что множество решений СЛАУ суть сумма какого-то ее решения + пространства решений однородной СЛАУ с той же матрицей коэффициентов. Винберг как-то это доказывает, хотя очевидно, что матрица коэффициентов СЛАУ - суть матрица линейного оператора, который понятно каким образом связан с этой СЛАУ. А множество решений СЛАУ - суть элемент факторпространства этого линейного оператора. Ну и по теореме о гомоморфизме понятно, что этот класс образуется как сумма любого его элемента и ядра (которое в точности - пространство решений однородной СЛАУ). Упрощение колоссальное. Но самое главное, что видна природа этого кусочка математики - главное здесь в том, что категория матриц с умножением изоморфна категории конечномерных векторных пространств с композицией линейных операторов.
Что касается всех этих геометрических структур, нормы, углов, евклидовых пространств. Вот есть 3 аксиомы в определении нормы. Почему взяли именно такие? Непонятно. Естественная аксиома там - это только линейность по умножению. Гораздо логичнее было бы требовать равенство норм у равных направленных отрезков, но в общепринятом определении нормы этого нету. Ладно норма. Скалярное произведение - совсем край. Зачем симметричность? Причем там билинейность? Почему так обязательна положительная определенность. Может быть я такой один, но для меня это определение совершенно не выглядит естественным.
А вот то, что евклидовы пространства собираются в категорию (стрелки - ортогональные преобразования) - важно. Если рассмотреть 2 функтора в векторные пространства (один ковариантный забывающий, другой контраваринатый - переход к двойственному), то соответствие между элементом и функцией, порожденной скалярным произведением с этим элементом (т.е. функция
) окажется компонентой диестественного преобразования между этими двумя функторами. Это показывает, что каждое евклидово пространство
естественно изоморфно своему двойственному.
Возможно, изоморфизм евклидовых пространств одной размерности и естественный изоморфизм с двойственным - факты гораздо более фундаментальные, чем эти аксиомы из определения. В конце концов, если посмотреть с этой точки зрения, становится очевидными, что без билинейности ничего бы не работало. Я это имел в виду, когда говорил, что ситуация на самом деле довольно интересная и глубокая.