Я публиковал программу на PARI, получающую все 1044 паттерна (и на почту Вам отсылал) достаточно прямым и полным способом, это уже третий метод получения этих паттернов (первый pcoul, второй Вы). Совпадение всех трёх вариантов 100%. Надеюсь этим вопрос про полноту и корректность 1044 закрываем.
Во-1-х, не закрываем (в контексте обсуждаемой задачи).
Во-2-х, Да, Ваша программа, генерирующая 1044 паттерна, скорее всего работает верно, претензий к ней нет. Но я же про другое пишу.
Ниже будет довольно объёмный текст, а болдом выделю, что имеет отношение к этой программе. Так сказать, для контраста.
Итак:
i. Задача - провести независимую проверку результатов pcoul, в части доказательства минимальности цепочки на 12 делителей длинной 11. Так задача объявлена
Yadryara.
ii. Отсюда сразу следует, что никакими результатами pcoul мы не имеем права пользоваться до получения собственного окончательного (или промежуточного) результата.
iii. Также из постановки задачи следует, что мы должны доказать отсутствие меньшей цепочки, чем известная. А значит мы должны доказать, что ничего не пропустили.
iv. Выше предлагалось типизировать паттерны. Нет возражений, давайте типизируем.
Строим систему паттернов и типизируем их. Мы должны сделать что-то подобное:
1.1. Паттерны бывают "такие" (указать критерии).
1.2. Паттерны бывают "ещё вот такие" (указать критерии).
1.3. Паттерны бывают "сякие" (указать критерии).
....
1.n. Других паттернов не бывает (доказать).
2.1. Для "таких" паттернов используем такой алгоритм их построения.
2.2. Этот алгоритм обеспечивает, что мы никакой "такой" паттерн не пропустили (доказать).
2.3. Кстати, вот реализация алгоритма на PARI.3.х. Повторить пункты 2.1 - 2.3 для "ещё вот таких" паттернов.
4.1. "Сякие" паттерны невозможны, потому что
....
и где-то тут мы наконец-то можем сравнить получившуюся систему паттернов, с результатами
Код:
pcoul -a
(как промежуточный результат).
И это только независимая проверка построения паттернов. А далее будет их обсчёт (и там в полный рост встанут темы, которые мы с Вами обсуждали).
(Оффтоп)
Именно поэтому не ставлю (по крайней мере перед собой) задачи проведения независимой проверки результатов pcoul. Это добавляет к темам, которые обсуждали ранее, огромный кусок, связанный с доказательством полноты системы паттернов.