2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 кинематика . Отношение пути к перемещению.
Сообщение06.09.2022, 19:51 
Аватара пользователя


15/08/09
1465
МГУ
Часовая стрелка имеют длину $R$. За какое время, путь пройденный концом стрелки , будет больше модуля его перемещения в $k$-раз

Я рассуждаю так .

Рассмотрим окружность радиуса $R$ и с центром $O$. Зафиксируем на этой окружности две точки $A$,$B$. $A$-начальное положение конца стрелки и $B$-конечное положение конца стрелки. Тогда меньшая дуга $\widetilde{AB}$- Это путь, а хорда $AB$ это перемещение.

Тогда $t$-это время за которое выполнено, что $\frac{\widetilde{AB}}{AB}=k$

За время $t$ $\angle AOB= \frac{t\pi}{6}$

Длина $\widetilde{AB}=\frac{\pi Rt}{60}$


по теореме косинусов перемещение $AB=R\sqrt{2(1-\cos(\frac{t\pi}{6}))}$

Тогда получим уравнение

$$\frac{\pi Rt}{60}=kR\sqrt{2(1-\cos(\frac{t\pi}{6}))}$$

Вот $t$ из него сложно получить......

Может я все усложнил ?

 Профиль  
                  
 
 Re: кинематика . Отношение пути к перемещению.
Сообщение06.09.2022, 22:08 
Заслуженный участник
Аватара пользователя


18/09/14
5360
Вроде, правильно, но сложновато. По тексту задачи составляем уравнение $\sin\alpha=\dfrac{\alpha}{k}$, где $\alpha$ - половина угла поворота стрелки. Это уравнение решаем численно для конкретного значения $k$ (кстати, решений будет несколько, вероятно, здесь подразумевается наименьшее положительное решение). А уже зная $\alpha$ и угловую скорость движения стрелки, можно ответить на вопрос задачи. По-моему, так.

 Профиль  
                  
 
 Re: кинематика . Отношение пути к перемещению.
Сообщение07.09.2022, 06:18 
Аватара пользователя


15/08/09
1465
МГУ
Вообще это школьная задача, поэтому мне кажется должно быть совсем просто решение ….

 Профиль  
                  
 
 Re: кинематика . Отношение пути к перемещению.
Сообщение07.09.2022, 08:19 
Заслуженный участник
Аватара пользователя


18/09/14
5360
maxmatem в сообщении #1564272 писал(а):
должно быть совсем просто решение

Вот только его нет. Уравнение $\sin\alpha=\dfrac{\alpha}{k}$ является трансцендентным, и решения в обычных "школьных" функциях оно не имеет. Тут ничего не поделать.
Можно разве что ещё раз перечитать условие задачи. Вы уверены, что привели его точно?

 Профиль  
                  
 
 Re: кинематика . Отношение пути к перемещению.
Сообщение07.09.2022, 09:05 


17/10/16
5146
maxmatem
Везде эта задача приводится для частного случая $k=\pi$. Только вроде бы логично тогда уже приводить ее для случая $k=\frac{\pi}{2}$, тогда хотя бы есть простое решение (6 часов). Для случая $k=\pi$ все равно нужно решать численно.

 Профиль  
                  
 
 Re: кинематика . Отношение пути к перемещению.
Сообщение07.09.2022, 09:47 
Аватара пользователя


15/08/09
1465
МГУ
Я точно привёл условие .
Ну ладно . Всем спс

 Профиль  
                  
 
 Re: кинематика . Отношение пути к перемещению.
Сообщение07.09.2022, 11:14 
Аватара пользователя


11/12/16
14497
уездный город Н
для любого $k$ есть решение $\alpha =0$ :mrgreen:

Понятно, что далеко не для каждого $k$ оно единственное.

 Профиль  
                  
 
 Re: кинематика . Отношение пути к перемещению.
Сообщение07.09.2022, 11:53 
Заслуженный участник


28/12/12
7973
EUgeneUS в сообщении #1564282 писал(а):
Понятно, что далеко не для каждого $k$ оно единственное.

Единственное для $0\leq k\leq 1$.

 Профиль  
                  
 
 Re: кинематика . Отношение пути к перемещению.
Сообщение07.09.2022, 12:47 
Заслуженный участник
Аватара пользователя


13/08/08
14496
А что если эта задача чисто качественная, без всяких там ваших формул. Для начинающего школьника было бы интересно. Ну ясно, что путь всегда не болменьше перемещения, а для нашего случая равен ему только в начале движения, в нуле. На первом обороте $k$ увеличивается монотонно от $1$ до бесконечности и для любого такого коэффициента имеется единственное решение на первом обороте. А вот на втором обороте история не повторяется. Коэффициент убывает от бесконечности до некоторого числа, а потом снова возрастает к бесконечности. Но это число всё же побольше $4$. Ну старшеклассник может быть и найдёт точный минимум функции на втором и последующих оборотах. Минимумы возрастают и можно сделать вывод, что для каждого $k$ есть конечное количество решений. Нагляднее, по моему, рассуждать об обратном отношении. ВотЪ.

 Профиль  
                  
 
 Re: кинематика . Отношение пути к перемещению.
Сообщение07.09.2022, 12:50 
Заслуженный участник


28/12/12
7973
gris в сообщении #1564292 писал(а):
А что если эта задача чисто качественная, без всяких там ваших формул. Для начинающего школьника было бы интересно. Ну ясно, что путь всегда не больше перемещения, а для нашего случая равен ему только в начале движения, в нуле. На первом обороте $k$ увеличивается монотонно от $1$ до бесконечности и для любого такого коэффициента имеется единственное решение на первом обороте. А вот на втором обороте история не повторяется. Коэффициент убывает от бесконечности до некоторого числа, а потом снова возрастает к бесконечности.
По-моему, очень полезно графики порисовать и точки пересечения поискать.

 Профиль  
                  
 
 Re: кинематика . Отношение пути к перемещению.
Сообщение07.09.2022, 12:57 
Заслуженный участник
Аватара пользователя


18/09/14
5360

(gris)

gris в сообщении #1564292 писал(а):
Ну ясно, что путь всегда не больше перемещения

Вы оговорились :-) Наоборот.

 Профиль  
                  
 
 Re: кинематика . Отношение пути к перемещению.
Сообщение07.09.2022, 13:10 
Заслуженный участник
Аватара пользователя


13/08/08
14496
Дык с этого и начал. А именно с натурного эксперимента. Пустил точку по единичной окружности радиуса $1$. Прямо в эксельке. Переменная $t$ стартует от нуля.
Начальное положение точки $(1,0)$.
Текущее $(\cos x, \sin x)$.
Модуль перемещения $\sqrt {\sin^2 t+(1-\cos t)^2}$
Путь $t$
Лучше считать отношение перемещения к пути.
Можно и наоборот.
Но всё равно.
Может напутал что?
А, конечно, путь не меньше перемещения :oops: . Спасибо.
https://www.wolframalpha.com/input?i=plot++min%2820%2C+x%2Fsqrt%28sin%5E2+x%2B%281-cos+x%29%5E2%29%29+%28x+from+0+to+40%29
А, ещё добавка. Конечно, единственность понимается на интервале $(0, \infty)$. А то в нуле всё можно :-) Это я про $k\in [0,1]$. С этим согласен. Правда, "больше в одну вторую раз" ужасно звучит.

 Профиль  
                  
 
 Re: кинематика . Отношение пути к перемещению.
Сообщение07.09.2022, 14:54 
Аватара пользователя


11/12/16
14497
уездный город Н
gris в сообщении #1564296 писал(а):
Модуль перемещения $\sqrt {\sin^2 t+(1-\cos t)^2}$


Это легко упрощается до $|2 \sin (t/2)|$.

К вопросу о качественном анализе задачи, наличие модуля тут существенно.
Если его потерять, как произошло выше у уважаемого Mihr, то потеряются решения "больше 6 часов".

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 13 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Ascold


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group