nothingg, обратите внимание, что у первой вершины две соседние и у второй две. Но если вторая вершина находится через шаг от первой (по или против часовой стрелки), то тогда один сосед является общим, и они вдвоём делают запретными пять мест, а свободными остаются остальные

(надо учесть, что это действует, начиная с шестиугольника!), но когда вторая вершина находится на расстоянии двух и больше шагов от первой, то соседи вершин не пересекаются и они вдвоём делают запретными шесть мест, а свободными остаются остальные

(надо учесть, что это действует, начиная с семиугольника!) То есть при суммарном подсчёте надо учесть два варианта. Сколько в каждом вариантов для второй вершины и сколько для третьей. Раскрываем скобки и группируем. Да, правильные ответ правилен, но он действует при

Пока писал, уже написали:(
Я так понимаю вашу мысль: количество способов выбрать первую вершину равно

, тогда при выборе второй вершины вы разделили это на 2 случая
- Случай 1: вторая вершина находится через шаг от первой (по или против часовой стрелки) поэтому в этом случае есть 2 способа выбрать вторую вершину. При выборе третьей вершины мне нужно исключить 2 выбранные вершины, 2 вершины, смежные с первой вершиной, и вершину, смежную со второй вершиной, поэтому существует

способов выбрать третью.
- Случай 2: вторая вершина находится на расстоянии двух и больше шагов от первой поэтому в этом случае есть

способов выбрать вторую вершину, потому что мне нужно исключить 1 выбранную вершину, 2 вершины, смежные с первой, и 2 вершины, смежные с 2 соседними вершинами первой вершины. При выборе третьей вершины мне нужно исключить 5 вершин, о которых я говорил выше, и вторую, которую я выбрал недавно, поэтому есть

способов выбрать третью.
Поскольку порядок вершин не имеет значения, нам нужно разделить результат на

.
Результат:
