2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение26.05.2022, 06:46 
Аватара пользователя


11/12/16
13850
уездный город Н
VAL

Для для $k=70$ доказательство не сводилось в одной теме, и там действительно приходится продираться сквозь обсуждения.
Если хотите - вечером могу свести, но не в этой теме, а в "Пентадекатнлоне...". Эту бы тему использовал только для обсуждения общего случая.

VAL в сообщении #1555502 писал(а):
Можно еще раз, например, про невозможность случая $3^6\cdot a^4-1=2^3\cdot b^6\cdot c$.

VAL в сообщении #1555502 писал(а):
Но невозможность приведенного выше случая только что доказал. Это оказалось проще, чем продраться сквозь наши обсуждения :-)


Кстати, этот случай самый тяжёлый (с $k=70$ просто повезло, что удалось быстро подобрать модуль для исключения). А в общем случае пришлось повозиться.

"Сестринский случай": $3^4 \cdot a^6 -1=2^3\cdot b^6\cdot c$ (и его обобщение) исключается по Малой Теореме Ферма (для $k=70$ по модулю $7$) после известных манипуляций с сокращением степени двойки и выражения $c$.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение26.05.2022, 09:19 


21/04/22
356
VAL
В этой теме доказательство изложено в общем виде.
VAL в сообщении #1555502 писал(а):
$3^6\cdot a^4-1=2^3\cdot b^6\cdot c$

Этот случай в общем виде рассматривается во втором сообщении темы. В разделе lll.1 упоминается, что в случае, когда $p = 5$ общее доказательство не проходит и нужно рассмотреть этот случай отдельно. Это делается в третьем сообщении темы. Далее в разделе Vl написано, что после всего этого доказательства для случая $p = 5$ $q = 7$ остаются нерассмотренными только два следующих уравнения.
$$2a^6(2a^6+2) = 3^6d^4-1$$
$$2a^6(2a^6+2) = 3^4d^6-1$$
Именно они неразрешимы по модулю 27 (второе, кстати, неразрешимо и по модулю 7).

-- 26.05.2022, 09:33 --

EUgeneUS
Ваше доказательство случая $p = 5$ проверил. Ошибок не нашёл.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение26.05.2022, 09:50 
Заслуженный участник


27/06/08
4062
Волгоград
mathematician123 в сообщении #1555511 писал(а):
VAL
В этой теме доказательство изложено в общем виде.
Спасибо!
Для 70 я в итоге передоказал сам.
Может и в общем случае для меня будет проще поступить также. Типа "чукча - не читатель, чукча - писатель" :-)
А может теперь и разберусь с написанным. Появилась хоть какая-то психологическая уверенность. А то для 70 народ пишет "доказали, доказали...", а я в упор не вижу где.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение26.05.2022, 12:40 
Аватара пользователя


11/12/16
13850
уездный город Н
mathematician123 в сообщении #1555511 писал(а):
Ваше доказательство случая $p = 5$ проверил. Ошибок не нашёл.


Прекрасно. Настал очередной момент для сведения результатов в кучу. Как показал опыт на форуме это делать крайне неудобно. Видимо, придется осваивать какой-какой-нибудь он-лайн ЛаТеХ.

VAL в сообщении #1555513 писал(а):
Для 70 я в итоге передоказал сам.

Прекрасно. А там, где использовались проверки по модулю $27$, у Вас также или использовалось что-то другое?

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение26.05.2022, 15:15 
Заслуженный участник


27/06/08
4062
Волгоград
EUgeneUS в сообщении #1555539 писал(а):
А там, где использовались проверки по модулю $27$, у Вас также или использовалось что-то другое?
Другое. Из четырех вариантов первого уровня один отпал сразу, а 3 остальных распались на 4 подварианта каждый.
При отбраковке использовалось лишнее количество попарно взаимно простых делителей и рассуждения по модулям 3, 8, 7. Впрочем, как водится, все надо уточнить. Делал вчера ночью.

Общий случай осилил пока лишь частично. Но волевым решением раскомментировал строки с $2pq$ делителей в своей таблице.
По ходу обнаружилось, что из краткой (без начальных чисел цепочек) таблицы загадочным образом пропала часть чисел, которые остались в полной.
Сиреневым выделены реабилитированные (но не случайно пропавшие) значения, зеленым - новые.


Вложения:
All_even_M(k)_proved.pdf [78.65 Кб]
Скачиваний: 377
Table_I_26-05-22.pdf [139.71 Кб]
Скачиваний: 389
table_II_25-05-22.pdf [60.86 Кб]
Скачиваний: 393
 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение26.05.2022, 16:37 


21/04/22
356
mathematician123 в сообщении #1555356 писал(а):
$$2^{p-3} -1 = 3^{(p-1)/2} d^{(q-1)/2}$$. Случай с $+1$ невозможен по модулю 3.

-- 24.05.2022, 22:55 --

Лемма. Если $2^x-1$ делится на $3^y$, то $x$ делится на $2 \cdot 3^{y-1}$

Применяя эту лемму получаем, что $p-3$ делится на $2 \cdot 3^{\frac{p-3}{2}}$, что невозможно при достаточно большом $q$.

Оказывается, здесь всё гораздо проще. Равенство $2^{p-3} -1 = 3^{(p-1)/2} d^{(q-1)/2}$ невозможно по модулю 9.

mathematician123 в сообщении #1555356 писал(а):
Здесь я неверно применяю лемму. Правильно так: применяя эту лемму, получаем, что $\frac{q-1}{2}$ делится на $2^{\frac{q-7}{2}}$, что невозможно при достаточно большом $q$.

Уточняю, что эта делимость невозможна при $q > 11$.

-- 26.05.2022, 16:40 --

EUgeneUS в сообщении #1555485 писал(а):
ОК. Тогда надо будет её не забыть сделать.

Из сказанного выше следует, что нужно будет также сделать однократные проверки в случаях $p = 5, q = 11$ и $p = 7, q = 11$.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение26.05.2022, 21:12 


21/04/22
356
Кажется, в доказательстве нет ни одного места, где существенно используется, что $p \ne q$. Может быть, доказательство работает и в этом случае, то есть $M(2p^2) \le 3$?

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение26.05.2022, 23:20 
Заслуженный участник


27/06/08
4062
Волгоград
mathematician123 в сообщении #1555581 писал(а):
Кажется, в доказательстве нет ни одного места, где существенно используется, что $p \ne q$. Может быть, доказательство работает и в этом случае, то есть $M(2p^2) \le 3$?
Я все еще не все прошерстил. Но полагаю, что так и есть. По крайней мере, в тех ослабленных вариантах, которые я доказал ранее, $p=q$ никогда не мешало.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение27.05.2022, 05:32 
Аватара пользователя


11/12/16
13850
уездный город Н
mathematician123 в сообщении #1555581 писал(а):
Может быть, доказательство работает и в этом случае, то есть $M(2p^2) \le 3$?


В файле Хуго указано:
Код:
# L(25) = 3
...
# L(49) = 3


Поэтому полагал, что $M(2p^2) \le 3$ уже доказано :facepalm:
Если же общего доказательства для $p^2$ не было, то конечно, надо (попытаться) расширить доказательство и на этот случай.
Полагаю это только добавит случай $p=q=5$ "при исключении конечных переборов. Но это, конечно, надо проверять.

Кстати, если "конечные переборы" исключены всегда, то рассуждения о $gcd((p-1)/2, (q-1)/2)$ могут оказаться лишними (опять же нужно внимательно посмотреть все случаи).

На ближайших выходных планирую набить доказательство в Overleaf (первую итерацию, и без исключения некоторых конечных переборов - тут ожидается участие mathematician123).

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение27.05.2022, 09:47 
Аватара пользователя


11/12/16
13850
уездный город Н
VAL
mathematician123

(про текст на OverLeaf)

Обнаружил, что на бесплатном аккаунте OverLeaf можно "расшарить" проект только для одного человека :(
Можети быть у кого-то из Вас есть более продвинутый аккаунт? Тогда можно было бы создать в этом аккаунте заготовку и расшарить, хотя бы на нас троих...

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение27.05.2022, 10:40 
Заслуженный участник


27/06/08
4062
Волгоград
EUgeneUS в сообщении #1555613 писал(а):
VAL
mathematician123
Обнаружил, что на бесплатном аккаунте OverLeaf можно "расшарить" проект только для одного человека :(
Можети быть у кого-то из Вас есть более продвинутый аккаунт? Тогда можно было бы создать в этом аккаунте заготовку и расшарить, хотя бы на нас троих...
Снял тег off, поскольку это, IMHO, не оффтопик. (А если оффтопик, но надо перенести в "Пентадекатлон".)

Расшаривать проект нужно не на троих (на троих другое делают), а на всех, соавторов статьи.
Поскольку доказательство планируется именно туда.

У меня есть аккаунт на Papeeeria.
Прошлый раз я писал, что у меня таблица там не захотела компилироваться.
Сейчас попробовал, вроде, работает. И расшарить позволяет более чем на одного человека.
Так что, можно попытаться сорганизоваться там. Для этого мне нужны e-mail'ы участников.

Но есть "но". Я так и не разобрался там с русификацией :-(
Но есть и "контрно". "Я не разобрался" не означает, что никто не разберется.
Кроме того, статью в apXiv все равно будем делать на английском.

Еще одно соображение.
На Papeeria при бесплатной регистрации есть ограничение на количество проектов в год (а возможно, и на количество компиляций одного проекта).
В такой ситуации лучше группироваться на аккаунте новичка, который пока не выбрал даже части лимита.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение27.05.2022, 11:13 


21/04/22
356
Неожиданно, удалось доказать, что существует максимум конечное количество четвёрок последовательных натуральных чисел, имеющих $2p^s$ делителей ($p \ge 7$ фиксированное простое число, $s \ge 2$ натуральное). Существование четвёрки сводится к уравнению Туэ степени $\frac{p-1}{2}$. Доказательство разместить в этой теме или лучше создать новую?

-- 27.05.2022, 11:29 --

mathematician123 в сообщении #1555618 писал(а):
Существование четвёрки сводится к уравнению Туэ степени $\frac{p-1}{2}$.

Более точно: к уравнению $u^{\frac{p-1}{2}} - 2(v^2)^{\frac{p-1}{2}} = \pm 1$. Только что обнаружил, что конечность решений доказана только в случае неприводимости многочлена. Поэтому моё доказательство работает только в этом случае.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение27.05.2022, 13:24 
Аватара пользователя


11/12/16
13850
уездный город Н
mathematician123
ИМХО, лучше сюда.

mathematician123 в сообщении #1555618 писал(а):
конечность решений доказана только в случае неприводимости многочлена.

То есть речь о приводимости многочлена вида $x^n - 2 y^n$?
Меня гложут смутные сомнения, что они все неприводимы...

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение27.05.2022, 13:35 
Заслуженный участник


20/12/10
9061
EUgeneUS в сообщении #1555628 писал(а):
Меня гложут смутные сомнения, что они все неприводимы...
Дык, это же медицинский факт.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение27.05.2022, 14:49 


21/04/22
356
EUgeneUS в сообщении #1555628 писал(а):
То есть речь о приводимости многочлена вида $x^n - 2 y^n$?

Да

Предположим, что $x^n-2y^n = G(x, y)F(x, y)$. Подставим $y = 1$ и получим $x^n-2 = G(x, 1)F(x, 1)$, но многочлен $x^n-2$ неприводим по критерию Эйзенштейна. Это значит, что $G(x, 1)$ или $F(x, 1)$ является константой, то есть $G(x, y)$ или $F(x, y)$ содержит только переменную $y$. Пусть это будет $F(x, y)$. Пусть $ax^by^c$ - слагаемое в $G(x, y)$ с наибольшим возможным $c$, $dy^l$ - старший член $F(x, y)$. Тогда в произведении $G(x, y)F(x, y)$ присутствует слагаемое $adx^by^{c+l}$. Тогда $b = 0$. Это значит, что в $G(x, y)$ есть хотя бы одно слагаемое, не содержащее $x$. Но тогда $F(x, y)$ обязан быть константой.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 76 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: dgwuqtj


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group