2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение27.05.2022, 16:08 


21/04/22
356
mathematician123 в сообщении #1555618 писал(а):
Неожиданно, удалось доказать, что существует максимум конечное количество четвёрок последовательных натуральных чисел, имеющих $2p^s$ делителей ($p \ge 7$ фиксированное простое число, $s \ge 2$ натуральное).

Доказательство начнём с двух лемм.
Лемма 1. Пусть $n$ имеет $2p^s$ делителей, $q$ - простой делитель $n$, входящий в его разложении на простые в степени $h$. Тогда либо $h = 1$, либо $h = p^k-1$, либо $h = 2p^k-1$ (причём, простой делитель делитель первого и третьего типов может быть только один).
Заметим также, что $p^k-1$ делится на $p-1$. Это будет использовано в доказательстве второй леммы.
Лемма 2. Пусть $n$ имеет $2p^s$ делителей. Тогда $n$ можно представить в одном из следующих видов ($u, k$ натуральные, $v$ простое):
1) $v^{2p^s-1}$
2) $vu^{p-1}$
3) $v^{2p^k-1}u^{p-1}$
Доказательство. В разложении $n$ на простые множители либо есть простое в первой степени, либо нет. В первом случае $n$ имеет вид 2). Во втором случае в разложении $n$ на простые либо есть простые в степени кратной $p-1$, либо нет. В первом случае $n$ имеет вид 3), а во втором $n$ имеет вид 1).

Теперь перейдём к доказательству основного утверждения. Среди четырёх последовательных натуральных чисел, имеющих $2p^s$ делителей есть два чётных. Обозначим их $n_0$ и $n_2$, так что $n_0 \equiv 0 \pmod{8}$ и $n_2 \equiv 2 \pmod{8}$. Тогда $n_2 - n_0 = 2$. Заметим, что $n_2$ принадлежит второму типу, то есть $n_2 = 2u^{p-1}$. Далее будут рассмотрены три случая в зависимости от того, к какому из трёх типов принадлежит $n_0$.

I. $n_0 = 2^{2p^s-1}$. Подставив в уравнение $n_2 - n_0 = 2$, получим $u^{p-1} - 2^{2p^s-2} = 1$, что невозможно, так как в левой части разность квадратов.

II. $n_0 = 2^{p^k-1}vu^{p-1}$, $u$ нечётное. Подставив в уравнение $n_2 - n_0 = 2$, получим
$$(u^{\frac{p-1}{2}}+1)(u^{\frac{p-1}{2}}-1) = 2^{p^k-2}vu^{p-1}$$
НОД сомножителей в левой части равен двум, поэтому один из них имеет вид $2m^{p-1}$ либо $2^{p^k-3}m^{p-1}$. Тогда $u^{\frac{p-1}{2}} \pm 1 = 2m^{p-1}$ или $u^{\frac{p-1}{2}} \pm 1 = 2^{p^k-3}m^{p-1}$. Второе уравнение неразрешимо по теореме Михэйлеску, а первое является уравнением Туэ степени $\frac{p-1}{2}$, которое имеет конечное количество решений.

III. $n_0 = 2^{2p^k-1}u^{p-1}$ или $n_0 = 2^{p^k-1}v^{2p^l-1}u^{p-1}$. В первом случае получаем уравнение
$$ u^{p-1} - 2^{2p^k-2}u^{p-1} = 1$$, которое неразрешимо, так как слева разность квадратов. Рассмотрение второго случая аналогично разбору случая II. (уравнение Туэ получается то же самое).

-- 27.05.2022, 16:12 --

Оформить доказательство было сложнее, чем придумать. :-)

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение27.05.2022, 17:04 
Аватара пользователя


11/12/16
13850
уездный город Н
mathematician123 в сообщении #1555644 писал(а):
Среди четырёх последовательных натуральных чисел, имеющих $2p^s$ делителей есть два чётных. Обозначим их $n_0$ и $n_2$, так что $n_0 \equiv 0 \pmod{8}$ и $n_2 \equiv 2 \pmod{8}$.


А случай, что в цепочку входят числа $n_6$ и $n_0$, такие что $n_6 \equiv 6 \pmod{8}$ и $n_0 \equiv 0 \pmod{8}$, для $M(2p^s)$ тоже исключается? (как и для $M(2pq)$).
mathematician123 в сообщении #1555644 писал(а):
а первое является уравнением Туэ степени $\frac{p-1}{2}$, которое имеет конечное количество решений.

Меня гложут смутные сомнения, что решениями этого уравнения Туэ ($x^n - 2y^n = \pm 1$) являются только (для нечётных $n$, для чётных будут другие комбинации нулей и единиц)
а) $x=-1, y=-1$; $x=1, y=0$ (для плюса)
б) $x=-1, y=0$; $x=1, y=1$ (для минуса)
Что скорее всего запретит четвёрки наглухо.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение27.05.2022, 17:17 


21/04/22
356
EUgeneUS в сообщении #1555648 писал(а):
А случай, что в цепочку входят числа $n_6$ и $n_0$, такие что $n_6 \equiv 6 \pmod{8}$ и $n_0 \equiv 0 \pmod{8}$, для $M(2p^s)$ тоже исключается? (как и для $M(2pq)$).

Да, исключается. Число, дающее остаток 2 от деления на 4 должно иметь вид 2 (классификация из леммы 2).Поэтому оно является удвоенным квадратом и даёт остаток 2 при делении на 8.

-- 27.05.2022, 17:39 --

EUgeneUS в сообщении #1555648 писал(а):
Меня гложут смутные сомнения, что решениями этого уравнения Туэ ($x^n - 2y^n = \pm 1$) являются только (для нечётных $n$, для чётных будут другие комбинации нулей и единиц)
а) $x=-1, y=-1$; $x=1, y=0$ (для плюса)
б) $x=-1, y=0$; $x=1, y=1$ (для минуса)
Что скорее всего запретит четвёрки наглухо.

Случай, когда $n$ делится на 3, сводится к частному случаю гипотезы Михэйлеску $n^2-1 = m^3$, а это доказывает $M(2p^s) \le 3$ для $p \equiv 1 \pmod{3}$.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение27.05.2022, 21:24 
Заслуженный участник


27/06/08
4062
Волгоград
$n_6$ никогда никуда не входит :-)

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение28.05.2022, 10:08 


21/04/22
356
mathematician123 в сообщении #1555644 писал(а):
$u^{\frac{p-1}{2}} \pm 1 = 2m^{p-1}$


В случае $p \equiv 1 \pmod{4} $ это уравнение сводится к уравнению $x^2 \pm 1 = 2y^4$. Со знаком минус, применяя основную теорему арифметики, можно получить уравнение $x^4-8y^4 = 1$, которое решается методом бесконечного спуска. Со знаком плюс это уравнение разобрано в теме https://dxdy.ru/topic149661.html. Значит, $M(2p^s) \le 3$ доказано и в случае $p \equiv 1 \pmod{4}$.

-- 28.05.2022, 10:19 --

mathematician123 в сообщении #1555706 писал(а):
Значит, $M(2p^s) \le 3$ доказано и в случае $p \equiv 1 \pmod{4}$.

Причём это доказательство работает и в случае $p = 5$.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение28.05.2022, 12:58 
Заслуженный участник


27/06/08
4062
Волгоград
Не понял, для чего нужен случай $k=2p^2$. В Теореме 2 нет оговорки $p\ne q$, а случаи $k=18$ и $k=50$ легко рассматриваются отдельно.

PS: Похоже, сколько я не ссылался на статью, никто (включая меня) туда и не заглянул :-(

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение28.05.2022, 16:10 
Аватара пользователя


11/12/16
13850
уездный город Н
VAL в сообщении #1555721 писал(а):
Не понял, для чего нужен случай $k=2p^2$.


В общем доказательстве $M(2pq) \le 3$ (кроме исключения переборов) случай $p=q=5$ возникает только один раз, а в остальном ограничение $p \ne q$ выглядит излишним.
Если при рассмотрении переборов придётся снова рассматривать $p=q=5$ и-или $p=q=7$, то можно и не рассматривать, а сослаться на "Теорему 2".

Для всех:
Набил доказательство $M(2pq) \le 3$ в OverLeaf. Кроме некоторых случаев исключения переборов, вынесенных в леммы.
Вот ссылка на pdf на гугл-диске.

Прошу не пинать ногами за "колхозную" верстку. А на опечатки и ошибки просьба указать.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение29.05.2022, 11:36 


21/04/22
356
Докажем, что $M(d) \le 3$, если $d \equiv \pm 2 \pmod{12}$ и все простые делители числа $d$ дают остаток 1 при делении на 4.

Лемма 1.Если натуральное число $n$ имеет $d \equiv \pm 2 \pmod{12}$ делителей, причём все простые делители $d$ дают остаток 1 при делении на 4, то $n$ можно представить в виде $u^4v^{2k+1}$, где $u$ натуральное, $v$ простое.

Лемма 2. Если число $n \equiv 2 \pmod{4}$ имеет $d \equiv \pm 2 \pmod{12}$ делителей, то $n = 2m^4 \equiv 2 \pmod{8}$ для некоторого натурального $m$.

Теперь докажем основное утверждение. Как и раньше, рассмотрим уравнение $n_2-n_0 = 2$. Из леммы 2 получаем $n_2 = 2m^4$. Рассмотрим два случая в зависимости от того, в чётной или нечётной степени входит двойка в разложение $n_0$.

I. $n_0 = 2^{2k+1}u^4$. Подставим в уравнение $n_2-n_0 = 2$ и получим $m^4 - 2^{2k}u^4 = 1$, что невозможно, так как слева разность квадратов.

II. $n_0 = v^{2l+1}2^{4k}u^4$, $u$ нечётное. Подставим в уравнение $n_2 - n_0 = 2$, получим $(m^2-1)(m^2+1) = 2^{4k-1}v^{2l+1}u^4$. Либо $m^2+1$ делится на $v$, либо $m^2-1$ делится на $v$. В первом случае $m^2-1 = 2^{4k-2}y^4$, что невозможно, так как квадраты натуральных чисел не могут отличаться на 1. Во втором случае $m^2+1 = 2y^4$. А это Ljunggren's equation (тема https://dxdy.ru/topic149661.html). Единственное решение $m = 239$, $y = 13$, но оно не подходит.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение29.05.2022, 12:01 
Заслуженный участник


27/06/08
4062
Волгоград
mathematician123,
Мне представляется, что Ваш результат про $M(2p^s$ легко обобщается до $M(2\prod p_i)$, где $gcd(p_i-1)\ge 4$.

PS: Кажется, я опоздал со своим наблюдением :-)

-- 29 май 2022, 12:07 --

mathematician123 в сообщении #1555767 писал(а):
Докажем, что $M(d) \le 3$, если $d \equiv \pm 2 \pmod{12}$ и все простые делители числа $d$ дают остаток 1 при делении на 4.
Класс!

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение29.05.2022, 12:56 


21/04/22
356
VAL в сообщении #1555771 писал(а):
Мне представляется, что Ваш результат про $M(2p^s)$ легко обобщается до $M(2\prod p_i)$, где $gcd(p_i-1)\ge 4$.

PS: Кажется, я опоздал со своим наблюдением :-)

В моём доказательстве $gcd(p_i-1) = 4k$. Возможен ещё случай $gcd(p_i-1) = 4k+2$. Вы думаете, его тоже можно доказать?

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение29.05.2022, 13:59 
Заслуженный участник


27/06/08
4062
Волгоград
mathematician123 в сообщении #1555776 писал(а):
В моём доказательстве $gcd(p_i-1) = 4k$.
Угу.
Цитата:
Возможен ещё случай $gcd(p_i-1) = 4k+2$. Вы думаете, его тоже можно доказать?
Не исключено.
Ранний вариант Теоремы 2 из нашей с Василием работы формулировался $M(2pq) \le 3$ для $gcd(p-1,q-1)=4t, t>1$. А затем ограничение кратности 4 удалось снять.

Я вообще практически уверен, что для всех $k$ (за исключением двойки), сравнимых с $\pm 2$ по модулю 12, $M(k)=3$.
И мы к этому приближаемся. Но мелкими шагами. Так что еще неизвестно "догонит ли Ахиллес черепаху".

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение29.05.2022, 20:07 
Аватара пользователя


29/04/13
8120
Богородский
Может я чего-то не понимаю, а может здесь опять невнимательность автора.

mathematician123 в сообщении #1555767 писал(а):
Докажем, что $M(d) \le 3$, если $d \equiv \pm 2 \pmod{12}$ и все простые делители числа $d$ дают остаток 1 при делении на 4.

Двойка является простым делителем такого числа $d$ ?
Да, всегда.
Двойка даёт остаток 1 при делении на 4?
Нет, никогда.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение29.05.2022, 20:42 


21/04/22
356
Yadryara в сообщении #1555794 писал(а):
а может здесь опять невнимательность автора.

Да. В условие нужно добавить, что остаток 1 от деления на 4 дают нечётные простые делители $d$.

-- 29.05.2022, 21:03 --

VAL в сообщении #1555782 писал(а):
Цитата:
Возможен ещё случай $gcd(p_i-1) = 4k+2$. Вы думаете, его тоже можно доказать?
Не исключено.
Ранний вариант Теоремы 2 из нашей с Василием работы формулировался $M(2pq) \le 3$ для $gcd(p-1,q-1)=4t, t>1$. А затем ограничение кратности 4 удалось снять.

Посмотрел случай $gcd(p_i-1) = 4k+2$. Удалось обобщить два моих предыдущих доказательства.

Теорема. Пусть $d \equiv \pm 2 \pmod{12}$, $gcd(p_i-1) = 2k > 2$, где $p_i$ - нечётные простые делители $d$. Тогда каждая пара последовательных чётных чисел $n_0$ и $n_2$, имеющих $d$ делителей, даёт нетривиальное решение одного из уравнений $x^k-2y^{2k} = \pm 1$, где $x = \sqrt{\frac{n_2}{2}}$.

Доказательство примерно такое же, как и в случае $d = 2p^s$.

Следствие 1. В случае $k = 2s$ получаем Ljunggren Equation, которое имеет единственное нетривиальное решение $(13, 239)$, которое не подходит. Поэтому в этом случае $M(d) \le 3$ доказано.

Следствие 2. В случае $k = 3s$ уравнение можно свести к частному случаю гипотезы Каталана $a^2-1 = b^3$, которое имеет единственное нетривиальное решение $(3, 2)$, которое не подходит. Поэтому в этом случае доказано $M(d) \le 3$.

Следствие 3.В общем случае для фиксированного $k$ получается уравнение Туэ, которое имеет конечное количество решений. В этом случае доказана конечность пар $n_0$ и $n_2$.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение30.05.2022, 18:36 
Аватара пользователя


11/12/16
13850
уездный город Н
Обновил немного файл с доказательством $M(2pq) \le 3$
Ссылка

Всем, кто отметил опечатки и прочие нехорошести - огромное спасибо!
Отдельное спасибо уважаемому mathematician123 за набор недостающих лемм.

 Профиль  
                  
 
 Re: M(2pq) <= 3. Доказательство для отдельных случаев
Сообщение30.05.2022, 22:11 


21/04/22
356
EUgeneUS
Сейчас ещё странное место в доказательстве обнаружил.
Страница 6 писал(а):
Так как
$\frac{q-1}{2}$ - нечётное
$q$ - нечётное простое,
то $q$ представимо
либо как $q = 6m+1$
либо как $q = 6m+5$

Условие представимости $q$ в указанном виде никак не зависит от чётности $\frac{q-1}{2} $. Это верно для всех простых $q > 3$.

-- 30.05.2022, 22:17 --

Ещё в Latex есть специальная комбинация символов для тире: нужно поставить три дефиса ---.

-- 30.05.2022, 22:27 --

Тем временем, с помощью факториальности $\mathbb{Z}[\sqrt{-2}]$ удалось решить уравнение $x^k-2y^{2k} = 1$. Но новых оценок для $M(d)$ это не даёт, так как уравнение $x^k-2y^{2k} = -1 $ остаётся нерешённым.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 76 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: dgwuqtj


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group