В очередной раз попалось про наибольшие и т. д. элементы множества. Я и раньше знал, что в множестве может быть несколько максимальных элементов. Но знать-то я знал, а вот попытка привести конкретный пример этого у меня не получалось. Сейчас, как будто, что-то придумалось. Не знаю, так не так. Посмотрите, пожалуйста. Может, замечания какие-нибудь будут. Я буду показывать на множестве
. В качестве отношения я возьму "является кратным". Тогда, если бы при таких условиях существовал наибольший элемент, то им бы мог быть только наибольший (я имею ввиду конкретно вот в этом месте обычный, школьный, смысл слова "наибольший") элемент этого множества 4: для любого другого элемента этого множества можно указать третий элемент множества, который будет больше этого другого, и, значит, этот другой элемент не может быть кратен этому третьему. Но 4 не кратно 3, поэтому в данном множестве при данном отношении наибольшего элемента нет. Теперь посмотрим, как обстоит дело в данном случае с максимальными элементами. Имеем следующую цепочку кратностей:
,
. Если же
и
, то
только и только 4. Получается, 4 - максимальный элемент. Далее, имеем еще одну кратность:
, а
и
тогда и только тогда, когда
. Получается, что 3 - еще один максимальный элемент. Итак, получили, что при данном множестве и данном отношении имеем 2 максимальных элемента. Скажите, пожалуйста, я правильный пример придумал?