2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение12.12.2021, 11:32 
Заслуженный участник
Аватара пользователя


05/12/09
1813
Москва
vicvolf в сообщении #1542553 писал(а):
В статье же рассматривается урезанная функция Мебиуса
Да какая разница. В конечном счете, закон повторного логарифма должен выполняться или не выполняться одновременно для исходной и урезанной.

Пусть $n$ - нечетное число, свободное от квадратов, тогда $2n$ тоже свободно от квадратов, и $\mu(n)\mu(2n)=-1$.

-- Вс дек 12, 2021 11:36:40 --

vicvolf в сообщении #1542553 писал(а):
Попробую пояснить почему блоки брались равной длины.
Нет, не поэтому.

 Профиль  
                  
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение12.12.2021, 15:32 


23/02/12
3372
alisa-lebovski в сообщении #1542560 писал(а):
Пусть $n$ - нечетное число, свободное от квадратов, тогда $2n$ тоже свободно от квадратов, и $\mu(n)\mu(2n)=-1$.
Аналогично и для четного. Разве автор это не проверял?

 Профиль  
                  
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение12.12.2021, 16:20 
Заслуженный участник
Аватара пользователя


05/12/09
1813
Москва
vicvolf в сообщении #1542590 писал(а):
Аналогично и для четного. Разве автор это не проверял?
Если $n$ - четное, свободное от квадратов, то $2n$ не свободно от квадратов (делится на $4$). Нет, автор этого не проверял.

 Профиль  
                  
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение12.12.2021, 22:00 


23/02/12
3372
alisa-lebovski в сообщении #1542608 писал(а):
Если $n$ - четное, свободное от квадратов, то $2n$ не свободно от квадратов (делится на $4$).
Согласен.
Цитата:
Нет, автор этого не проверял.
Автор делает типовые тесты на случайность, которые есть у Кнута и.т.д. Конечно они не рассчитаны на проверку именно функции Мебиуса. Автор так и пишет, что давайте забудем о происхождении данной последовательности. Вот, если бы Вы не знали, что эта функция Мебиуса, то такой бы тест не делали. А сделали бы типовые тесты и они подтвердили случайность этой последовательности с требуемой вероятностью.

 Профиль  
                  
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение12.12.2021, 22:48 
Заслуженный участник
Аватара пользователя


05/12/09
1813
Москва
vicvolf в сообщении #1542663 писал(а):
Автор делает типовые тесты на случайность, которые есть у Кнута и.т.д.
Тут бы и задуматься - а для чего на самом деле предназначены типовые тесты, у Кнута и др., какова их, так сказать, целевая аудитория?

 Профиль  
                  
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение13.12.2021, 00:05 


23/02/12
3372
alisa-lebovski в сообщении #1542670 писал(а):
Тут бы и задуматься - а для чего на самом деле предназначены типовые тесты, у Кнута и др., какова их, так сказать, целевая аудитория?
Тесты подтвердили случайность данной последовательности с вероятностью 0,95. Значит с вероятностью 0,05 данная последовательность не является случайной и возможны корреляции. Естественно для доказательства случайности тесты не подходят.

 Профиль  
                  
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение13.12.2021, 01:16 
Заслуженный участник
Аватара пользователя


01/09/13
4676
vicvolf в сообщении #1542663 писал(а):
давайте забудем о происхождении данной последовательности

Ну давайте - значит имеем посредственный ГПСЧ. А какое тогда это всё имеет отношение к исходному вопросу?

 Профиль  
                  
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение13.12.2021, 10:44 
Заслуженный участник
Аватара пользователя


05/12/09
1813
Москва
vicvolf в сообщении #1542675 писал(а):
Тесты подтвердили случайность данной последовательности с вероятностью 0,95. Значит с вероятностью 0,05 данная последовательность не является случайной и возможны корреляции. Естественно для доказательства случайности тесты не подходят.
Да хоть 0,999. Тут все все гораздо сложнее. Во-первых, обсуждаемые статистические тесты изначально разработаны в статистике для анализа последовательностей случайных величин, и проверяют две вещи: что эти случайные величины принимают значения 0 и 1 равновероятно, и что эти величины независимы. Все это вкратце здесь и называют "случайной" последовательностью. Подсовывать им псевдослучайные числа, явление другой природы, это уже значит их обманывать. Все равно что сдавать на анализ мочи яблочный сок (такое было в одной серии "Доктора Хауса"). Во-вторых, статистические тесты все-таки применяются к ГПСЧ, но не как надежная защита от не-случайности, а как сито, которое должны проходить "хорошие" генераторы (именно в этой роли тесты фигурируют у Кнута). В этом контексте эти тесты заведомо не годны как что-то проверяющее случайность, а только как что-то оценивающее качественную иллюзию случайности. В-третьих, вообще непонятно, что такое вероятность применительно к гипотезе Римана, что может значить, что она верна с вероятностью 0,95 или 0,99. Тут нет вероятностного пространства, нет статистики. Или это понимать как меру нашей уверенности в гипотезе? Но такие вещи в теории чисел не применимы.

 Профиль  
                  
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение13.12.2021, 18:34 


23/02/12
3372
alisa-lebovski в сообщении #1542709 писал(а):
Тут все все гораздо сложнее. Во-первых, обсуждаемые статистические тесты изначально разработаны в статистике для анализа последовательностей случайных величин, и проверяют две вещи: что эти случайные величины принимают значения 0 и 1 равновероятно, и что эти величины независимы. Все это вкратце здесь и называют "случайной" последовательностью. Подсовывать им псевдослучайные числа, явление другой природы, это уже значит их обманывать.
Что значит обманывать? Никто не знает в последовательности случайные числа или нет. Для этого их и проверяют.
alisa-lebovski в сообщении #1542709 писал(а):
Во-вторых, статистические тесты все-таки применяются к ГПСЧ, но не как надежная защита от не-случайности, а как сито, которое должны проходить "хорошие" генераторы (именно в этой роли тесты фигурируют у Кнута). В этом контексте эти тесты заведомо не годны как что-то проверяющее случайность, а только как что-то оценивающее качественную иллюзию случайности.
С другой стороны, это псевдослучайные числа и тогда почему их не проверять, как ГПСЧ?
Цитата:
В-третьих, вообще непонятно, что такое вероятность применительно к гипотезе Римана, что может значить, что она верна с вероятностью 0,95 или 0,99.
Вот здесь я полностью согласен не может быть ГР справедлива с определенной вероятностью. Но с другой стороны эквивалентная формулировка ГР об асимптотике может быть справедлива с вероятностью, отличной от 1.
Вообщем, я с Вами согласен - эти статистические тесты в работе ничего не дают, так как не являются доказательством.

-- 13.12.2021, 18:38 --

Geen в сообщении #1542678 писал(а):
А какое тогда это всё имеет отношение к исходному вопросу?
Автор пишет - мы не претендуем на строгое доказательство представленных здесь результатов. Более того, хотели бы выразить надежду, что эта работа будет стимулировать дальнейшие строгие исследования настоящих математиков по этому вопросу и обратить внимание на возможный способ решения давней проблемы, такой как гипотеза Римана.

 Профиль  
                  
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение13.12.2021, 23:31 


23/02/12
3372
vicvolf в сообщении #1542500 писал(а):
Последовательность нулей функции Мертенса приведена здесь https://oeis.org/A028442

Обозначим значения этих нулей: $z_1,z_2,...$. В этом случае отрезки $[0,z_1],[0,z_2]...$ являются вложенными.

При $z_n \to \infty$ последовательность $[0,z_n]$ покрывает натуральный ряд.

На основании сказанного на отрезке $[0,z_n]$ для функции Мебиуса выполняется равенство вероятностей:

$P(\mu(k)=1)=P(\mu(k)=-1)$, где $k \leq z_n$ при $z_n \to \infty$.

Если рассматривать только значения $k$ - свободные от квадратов, то для урезанной функции Мебиуса получаем:

$P(\mu^{*}(k)=1)=P(\mu^{*}(k)=-1)=1/2$, где $k \leq z_n$ при $z_n \to \infty$.


Отсюда вытекает, что среднее значение модифицированной функции Мертенса $E[M^{*}(m)]=0$.

Это соответствует результату, полученному в данной работе на стр 44.

Так как значения, где функция Мебиуса $\mu(m)=0$ не влияют на среднее значение функции Мертенса, то оно также равно $E[M(m)]=0$.

 Профиль  
                  
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение14.12.2021, 00:23 
Заслуженный участник
Аватара пользователя


05/12/09
1813
Москва
vicvolf в сообщении #1542751 писал(а):
эта работа будет стимулировать дальнейшие строгие исследования настоящих математиков по этому вопросу и обратить внимание на возможный способ решения давней проблемы
Нет, это НЕ возможный способ, это тупик, сплошное недоразумение. В этом смысле статья абсолютно бесполезна. Так же как проверки на компьютере до больших чисел были бесполезны для доказательства теоремы Ферма. Если когда-то эта проблема будет решена, то НЕ таким способом. Физикам без понимания математики в решении подобных проблем делать нечего.

 Профиль  
                  
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение14.12.2021, 06:40 
Заслуженный участник


18/09/21
1765
alisa-lebovski в сообщении #1542838 писал(а):
Так же как проверки на компьютере до больших чисел были бесполезны для доказательства теоремы Ферма
Это с чего вдруг?
Если бы нашли контрпример, то это было бы чёткое доказательство ложности утверждения.
Никто же не знал, что она верна. Может она была бы не верна для каких-то больших чисел...

 Профиль  
                  
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение14.12.2021, 14:57 


23/02/12
3372
zykov в сообщении #1542848 писал(а):
alisa-lebovski в сообщении #1542838 писал(а):
Так же как проверки на компьютере до больших чисел были бесполезны для доказательства теоремы Ферма
Это с чего вдруг? Если бы нашли контрпример, то это было бы чёткое доказательство ложности утверждения. Никто же не знал, что она верна. Может она была бы не верна для каких-то больших чисел...
Кстати на стр 29 данной работы показано, как с помощью контрпримера была опровергнута гипотеза Мертенса: In 1985, Andrew Odlyzko and Herman te Riele proved however that the strong version of the Mertens conjecture is false using the Lenstra-Lenstra-Lovasz lattice basis reduction algorithm...

-- 14.12.2021, 15:06 --

alisa-lebovski в сообщении #1542838 писал(а):
Нет, это НЕ возможный способ, это тупик, сплошное недоразумение. В этом смысле статья абсолютно бесполезна.
Может использование тестов в данном случае было действительно не совсем уместно, но в статье есть и интересное. И конечно из-за этого ставить точку на вероятностном подходе к ГР не стоит :-)

 Профиль  
                  
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение14.12.2021, 22:04 


23/02/12
3372
vicvolf в сообщении #1542553 писал(а):
Любой начальный отрезок натурального ряда $\{1,2,\dotsc,n\}$ можно естественным образом превратить в совокупность вероятностных пространств $\left(\Omega_{n},\mathcal{A}_{n},\mathbb{P}_{n}\right)$, взяв $\Omega_{n}=\{1,2,\dotsc,n\}$, $\mathcal{A}_{n}$ — все подмножества $\Omega_{n}$, $\mathbb{P}_{n}(A)=\frac{|A|}{n}$. Тогда произвольную арифметическую функцию $f(k)$ (а точнее, её ограничение на $\Omega_{n}$) можно рассматривать как последовательность случайных величин $\xi_{n}$ на этих вероятностных пространствах: $\xi_{n}(k)=f(k)$, $1\leqslant k\leqslant n$. На фиксированном вероятностном пространстве арифметическая функция является случайной величиной и на этом вероятностном пространстве можно говорить о мат. ожидании $\mathbb{E}\xi_{n}=\frac{1}{n}\sum_{k=1}^{n}f(k)$ и дисперсии $\mathbb{D}\xi_{n}=\mathbb{E}\left\lvert\xi_{n}-\mathbb{E}\xi_{n}\right\rvert^{2}=\mathbb{E}\left\lvert\xi_{n}\right\rvert^{2}-\left\lvert\mathbb{E}\xi_{n}\right\rvert^{2}=\frac{1}{n}\sum_{k=1}^{n}\bigl\lvert f(k)\bigr\rvert^{2}-\left\lvert\frac{1}{n}\sum_{k=1}^{n}f(k)\right\rvert^{2}$, также моментах более высоких порядков, а для вещественной $f$ — о функции распределения $F_{\xi_{n}}(x)=\frac{1}{n}\bigl\lvert\{k\leqslant n:f(k)\leqslant x\}\bigr\rvert$ и характеристической функции $\varphi_{\xi_{n}}(t)=\mathbb{E}\mathrm{e}^{\mathrm{i}t\xi_{n}}=\frac{1}{n}\sum_{k=1}^{n}\mathrm{e}^{\mathrm{i}tf(k)}$


В данном вероятностном пространстве можно записать аналог закона больших чисел. Я ранее выводил эту формулу в другой теме на основании неравенства Чебышева:

$P_n(|f(m)-A_n| \leq b(n)\sigma_n)=1,n \to \infty$,

где $f(m), m=1,...,n$ - произвольная арифметическая функция, $A_n,\sigma_n$ - соответственно среднее и средне квадратичное отклонение $f(m), m=1,...,n$, а $b(n)$ - любая возрастаюшая функция при $n \to \infty$.

Формула аналога закона больших чисел доказана в работе Кубилюса.

Выше в этой теме я показал, что для арифметической функции Мертенса среднее значение $A_n=0$.

На основании формулы (161), обсуждаемой работы, для функции Мертенса средне квадратичного отклонения равно $\sigma_n=Cn^{1/2}$, где С- постоянная.

Если взять в качестве $b(n)=n^{\epsilon}$, где $\epsilon$ - положительная постоянная, то для функции Мертенса,на основании формулы аналога закона больших чисел, получим:

$P_n(|M(m)| \leq Cn^{1/2+\epsilon})=1, n \to \infty$ или $P_n(M(m)=O(n^{1/2+\epsilon})=1, n \to \infty$.

Таким образом, почти наверное, выполняется эквивалентная формулировка ГР.

 Профиль  
                  
 
 Re: Случайность функции Мебиуса и броуновское движение
Сообщение15.12.2021, 11:29 


23/02/12
3372
Мы раньше договаривались о другой форме записи:

$P_n(|f(m)-A_n| \leq b(n)\sigma_n) \to 1,n \to \infty$,

где $f(m), m=1,...,n$ - произвольная арифметическая функция, $A_n,\sigma_n$ - соответственно среднее и средне квадратичное отклонение $f(m), m=1,...,n$, а $b(n)$ - любая возрастаюшая функция при $n \to \infty$.

Тогда:

$P_n(|M(m)| \leq Cn^{1/2+\epsilon}) \to1, n \to \infty$ или $P_n(M(m)=O(n^{1/2+\epsilon}) \to1, n \to \infty$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 31 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Stratim


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group