Видимо, дело в том, что статью писали физики, в журнал по физике. По этому поводу есть анекдот: как физик доказывает, что все нечетные числа, большие двух, простые. Он проверяет: 3, 5, 7 - простые. Потом 9 - составное, видимо, ошибка эксперимента. Далее: 11, 13 - простые. Значит, доказано. Это к тому, что в математике и физике разные требования к строгости и доказательствам.
Да, он физик и он это не отрицает, поэтому и пишет: Стоит подчеркнуть, что стиль, принятый в презентации, - это стиль физика-теоретика, а не математика. В связи с этим мы не претендуем на строгое доказательство представленных здесь результатов. Более того, хотели бы выразить надежду, что эта работа будет стимулировать дальнейшие строгие исследования настоящих математиков по этому вопросу и обратить внимание на возможный способ решения давней проблемы, такой как гипотеза Римана.
Цитата:
Генераторы псевдослучайных чисел (в компьютерах) специально разрабатываются так, чтобы проходить разные статистические тесты. Однако они создают только иллюзию случайности, достаточно крепкую для прикладных целей, но не состоятельную математически. Вроде иллюзии движущегося изображения на экране или иллюзии Хари в "Солярисе". Но априори не известно, как далеко простирается эта иллюзия и на чем она "сломается". В данном случае, из прохождения статистических тестов НЕ следует закон повторного логарифма.
Здесь немного другое. Специально генератор случайных чисел не разрабатывался. Есть арифметическая функция - урезанная функция Мебиуса и предлагается оценить статистическими тестами случайность, выдаваемых ей временных рядов. Проверяется только это. Вывод о справедливости закона повторного логарифма, строго математически, из этого не делается.
-- 11.12.2021, 11:44 --Множество натуральных чисел бесконечно. Статистические методы не могут служить доказательством, они являются только эмпирической проверкой без каких-либо точных оценок справедливости гипотезы. Такими темпами скоро докажут что
это нормальное число.
Автор пишет: Для этого мы будет сравнивать сколь угодно большие подпоследовательности нашей последовательности с последовательностями, составленными из идеальных случайных переменных с двумя равновероятными значениями и проверять сходство их поведения.
Мы провели огромное количество тестов в интервале значений последовательности от 1 до
; хотя мы в основном сосредоточили свое внимание на последовательностях с
, чтобы избежать возможных нетипичных поведений ограниченной функции Мертенса при малых значениях индекса n.
Как объяснено более подробно ниже исследования в основном проводилось путем анализа блоков, состоящих из 160 млн. значений, и для всех блоков, которые мы анализировали, мы всегда наблюдали аналогичные результаты, независимо от начального значения блока.