Здравствуйте. Я пытаюсь составить матмодель процесса нагревания в установке, содержащей электронагреватель известной мощности, управляемый с помощью ШИМ, нагревательную камеру, внутри которой находится нагреватель, и которая отдает тепло в окружающую среду. Постоянная времени довольно большая по сравнению с периодом ШИМ, так что импульсностью можно пренебречь. Хочу построить адаптивную систему автоматического регулирования температуры, по мере работы уточняющую характеристики системы. Алгоритм оценивания будет основан на базе фильтра Калмана, пока что я хочу понять как найти передаточную функцию.
Вопрос 1: Как из закона сохранения тепловой энергии сделать диффур по которому тело будет нагреваться?
Вопрос 2: В случае, если в преобразовании лапласа полученного диффура будет невозможно разделить мощность управления (нагреватель) и температуру, как выразить передаточную функцию?
Вопрос 3: Как построить по полученной ПФ систему уравнений пространства состояний?
Вот что я начал:

Нагрев делается электронагревателем, стало быть,

Энергия нагреваемого тела

, наверное, можно считать

.
Энергия рассеяния (обдув+излучение)

, S - площадь поверхности,

- коэффициент теплоотдачи с этой поверхности.

, так?
Потом выражаем отсюда

и получаем

Применяем преобр-е лапласа, получаем: (хочу построить САУ)

Выражаем

, получаем передаточную ф-ю

Почему получается процесс второго порядка, если нагрев твердого тела это процесс первого порядка плюс задержка? Помогите пожалуйста. Задержку добавлю потом.