2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Уравнения четвёртой степени на вступительных экзаменах
Сообщение29.07.2021, 14:18 
Аватара пользователя


23/12/18
430

(Оффтоп)

Самая неудачная шутка в ФизМатЮморе :)

 Профиль  
                  
 
 Re: Уравнения четвёртой степени на вступительных экзаменах
Сообщение29.07.2021, 14:39 
Заслуженный участник


20/12/10
9100
xagiwo в сообщении #1527547 писал(а):
Шень рекомендует через 10-15 минут ставить два :)
Когда я в начале 90-х работал в нашем местном педе ассистентом, мой лектор (по алгебре) практиковал такую вещь: студенты у него на зачете вычисляли определителя 3-го порядка на время (давалось, кажется, 30 секунд). На мой вопрос, какой в этом смысл, страшно обиделся. Потом он перебрался в Москву, преподавал (а может, и до сих пор преподает) в МФТИ.

 Профиль  
                  
 
 Re: Уравнения четвёртой степени на вступительных экзаменах
Сообщение29.07.2021, 16:48 


11/02/20
57
nnosipov, ShMaxG Спасибо!

Red_Herring в сообщении #1527545 писал(а):
В принципе такие вещи надо уметь решать, но не на время и не на экзамене (и не на соревнованиях). И не всем. Иначе это превращается в IMO style drill.

Возможно и так.

 Профиль  
                  
 
 Re: Уравнения четвёртой степени на вступительных экзаменах
Сообщение29.07.2021, 23:33 
Заслуженный участник
Аватара пользователя


22/06/12
2129
/dev/zero
xagiwo в сообщении #1527527 писал(а):
FL91 я видел такую
подборку, вроде составленную из нескольких других. Впрочем, задачи не впечатляют

Спасибо! Ознакомился с темой, не знал, что так делали. Комментарии Варди в "Эйнштейне" к задачам любопытные.

 Профиль  
                  
 
 Re: Уравнения четвёртой степени на вступительных экзаменах
Сообщение31.07.2021, 10:59 
Заслуженный участник


20/12/10
9100
StaticZero в сообщении #1527615 писал(а):
Комментарии Варди в "Эйнштейне" к задачам любопытные.
Я смотрел его препринт (файл прилагаю). Решая пресловутое уравнение 4-й степени (problem 16), он почему-то считает, что советские школьники (1984 год) должны хорошо знать комплексные числа, хотя в те времена их давно уже не было в школьной программе. По-моему, он совершенно не понял, в чем прикол в этой задаче, а он вот в чем: корней --- вещественных --- нет, но это трудно доказать, потому что минимум многочлена примерно $0,005$. Впрочем, для "сдвинутого" варианта $z^4-30z^2+32z+353$ работает стандартная техника: будем искать разложение $z^4-30z^2+32z+353=(z^2+az+b)(z^2+cz+d)$ с неопределенными (вещественными!) коэффициентами. Технически этот план, конечно, реализовать сложно (за 20 минут экзамена просто невозможно), но в конечном итоге $a$ окажется равным учетверенному корню биквадратного уравнения $t^4-4t^2-1=0$, т.е. $a=\pm 4\sqrt{2+\sqrt{5}}$. Тогда $b=(2-\sqrt{5})a+1+8\sqrt{5}$. И вот теперь надо доказывать, что $a^2-4b<0$ (это действительно чуть-чуть меньше нуля). Поскольку все радикалы квадратные, это можно сделать возведением в квадрат (приближенные вычисления не нужны).

Вот, кстати, примерно то же самое от Sergey Markelov (см. файл Epilogue_12_28_2016-158.pdf).


Вложения:
Epilogue_12_28_2016-158.pdf [62.87 Кб]
Скачиваний: 379
Vardi-solutions.pdf [728.42 Кб]
Скачиваний: 381
 Профиль  
                  
 
 Re: Уравнения четвёртой степени на вступительных экзаменах
Сообщение31.07.2021, 12:52 
Заслуженный участник


20/12/10
9100
xagiwo в сообщении #1527527 писал(а):
Впрочем, задачи не впечатляют
Надо делать поправку на время, все-таки это было 30-40 лет назад. С тех пор произошел заметный прогресс: старые трюки все выучили и они превратились во что-то стандартное.

 Профиль  
                  
 
 Re: Уравнения четвёртой степени на вступительных экзаменах
Сообщение31.07.2021, 13:06 
Аватара пользователя


23/12/18
430
nnosipov угу. А ещё я, как оказалось, не очень внимательно читал и пропустил все интересные задачи, так что моё высказывание лучше вообще не принимать к сведению)

 Профиль  
                  
 
 Re: ФизМатЮмор: анекдоты, байки, шутки, афоризмы и др.
Сообщение01.08.2021, 07:20 
Заслуженный участник


26/06/07
1929
Tel-aviv
nnosipov в сообщении #1527450 писал(а):
Это все малоинтересные фантазии Шеня на почве притеснения евреев на вступительных экзаменах в МГУ столетней давности. Казалось бы, столько времени с тех пор прошло, должно же было отпустить, ан нет, у него все равно периодически подгорает.

Вы это серьёзно? Стольким людям жизнь исковеркали. Беллу Абрамовну Субботовскую, которая которая решилась помочь, так просто убили. Сендерова, Каневского в тюрьму посадили. Ничего себе "малоинтересные фантазии"! Одно из самых черных пятен в истории России! Как Вам не стыдно за такие слова?! По-моему, России об этих ужасах дискриминации нужно вечно помнить и каяться.

 Профиль  
                  
 
 Re: Уравнения четвёртой степени на вступительных экзаменах
Сообщение01.08.2021, 07:41 
Заслуженный участник


20/12/10
9100
arqady
Давайте заниматься математикой.

 Профиль  
                  
 
 Re: Уравнения четвёртой степени на вступительных экзаменах
Сообщение04.08.2021, 21:14 


20/09/09
2062
Уфа
Подобная задача была на олимпиаде "Покорите Воробьевы горы" - 2011, задача №8: https://rsr-olymp.ru/upload/files/tasks/115/2010/5_17366-tasks&ans-math-11-zaoch_tur-10-11.pdf

 Профиль  
                  
 
 Re: Уравнения четвёртой степени на вступительных экзаменах
Сообщение04.08.2021, 21:24 
Заслуженный участник


20/12/10
9100
Rasool в сообщении #1528082 писал(а):
Подобная задача
Подобная какой задаче? Здесь обсуждаются уравнения 4-й степени.

 Профиль  
                  
 
 Re: Уравнения четвёртой степени на вступительных экзаменах
Сообщение05.08.2021, 22:45 


20/09/09
2062
Уфа
nnosipov в сообщении #1528083 писал(а):
Rasool в сообщении #1528082 писал(а):
Подобная задача
Подобная какой задаче? Здесь обсуждаются уравнения 4-й степени.

А, извините - задача №8 - система квадратных уравнений. Но схемы решений похожи.

 Профиль  
                  
 
 Re: Уравнения четвёртой степени на вступительных экзаменах
Сообщение06.08.2021, 03:50 
Заслуженный участник


20/12/10
9100
Rasool в сообщении #1528157 писал(а):
Но схемы решений похожи.
Как свинка на морскую свинку.

 Профиль  
                  
 
 Re: Уравнения четвёртой степени на вступительных экзаменах
Сообщение01.09.2021, 17:58 
Заслуженный участник


20/12/10
9100
Еще один комментарий по поводу problem 16 (см. post1527704.html#p1527704). Если мы хотим решить это уравнение 4-й степени, оставаясь в поле действительных чисел максимально долго, то мы должны, применяя метод Феррари или как было описано выше, использовать иррациональный корень кубической резольвенты (он является вещественной квадратичной иррациональностью из $\mathbb{Q}(\sqrt{5})$). Тогда мы получим два квадратных уравнения, в коэффициентах которых присутствует неупрощаемый двойной вещественный радикал $\sqrt{2+\sqrt{5}}$. Если эти уравнения решать обычным образом (через дискриминант), то получаемые (комплексные, как мы уже знаем) корни будут записаны как трижды вложенные радикалы. Более точно, вещественные части этих корней --- это дважды вложенные вещественные радикалы, а мнимые --- уже трижды вложенные вещественные радикалы. С другой стороны, из ответа к задаче, который дал Vardi, следует, что для вещественной и мнимой части достаточно дважды вложенных вещественных радикалов (ответ в такой форме мы получим, если в методе Феррари будем использовать рациональный корень кубической резольвенты). Это означает, что более школьный способ решения задачи дает корни в усложненном виде. Иными словами, полученные выражения для мнимых частей корней могут и должны быть упрощены. В этой связи несколько интригующе выглядит концовка текста от Sergey Markelov (см. соответствующий прикрепленный файл из post1527704.html#p1527704): "we arrive at ... from which the four solutions on p. 55 follow immediately". Здесь непонятно, о каких 4-х решениях идет речь; если это решения в форме Vardi, то интригует это "immediately": все-таки упрощение выражений типа $\sqrt{-7+4\sqrt{5}+(-8+4\sqrt{5})\sqrt{2+\sqrt{5}}}$ не совсем банальная (для школьника) задача. Или я не прав?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 29 ]  На страницу Пред.  1, 2

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: drzewo


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group