Комментарии Варди в "Эйнштейне" к задачам любопытные.
Я смотрел его препринт (файл прилагаю). Решая пресловутое уравнение 4-й степени (problem 16), он почему-то считает, что советские школьники (1984 год) должны хорошо знать комплексные числа, хотя в те времена их давно уже не было в школьной программе. По-моему, он совершенно не понял, в чем прикол в этой задаче, а он вот в чем: корней --- вещественных --- нет, но это трудно доказать, потому что минимум многочлена примерно

. Впрочем, для "сдвинутого" варианта

работает стандартная техника: будем искать разложение

с неопределенными (вещественными!) коэффициентами. Технически этот план, конечно, реализовать сложно (за 20 минут экзамена просто невозможно), но в конечном итоге

окажется равным учетверенному корню биквадратного уравнения

, т.е.

. Тогда

. И вот теперь надо доказывать, что

(это действительно чуть-чуть меньше нуля). Поскольку все радикалы квадратные, это можно сделать возведением в квадрат (приближенные вычисления не нужны).
Вот, кстати, примерно то же самое от Sergey Markelov (см. файл Epilogue_12_28_2016-158.pdf).