Ну, для начала - это явно шутка. А "в каждой шутке есть доля шутки", и если забывать об этом и пытаться интерпретировать шутку, как Вечную Истину и Руководство к Действию, ничего хорошего не выйдет. Даже если помимо шутки в афоризме есть серьёзные и полезные вещи.
А конкретно этот афоризм могу проиллюстрировать двумя примерами.
Можно считать. Возводить в квадрат 10, 11, 12, 13 и 14, суммировать, делить. А можно вспомнить, что
И сократить счёт до одного возведения в квадрат (
), сокращения вторых членов разложения в квадрат, а третьи возводить придётся, но это не столь сложно, "единожды един - един, дважды два - четыре". И тогда видно, что пять раз по 144 и ещё 10, получается 730 и при делении на 365 будет 2. Счёта не избежали вполне, но сократили его объём резко (полагаю, что Рачинский, основатель изображённой школы, помещик и прогрессивный деятель, требовал именно счёта и в уме - в его социальной программе устный счёт, чтобы горожане мужиков не обсчитывали).
А второй пример из личного опыта. Приятель-аспирант свёл одну задачу к решению очень большой СЛАУ. Она что-то не решалась, он, быв неплохим програмистом, написал свою библиотеку повышенной точности, убив на неё год аспирантуры, добился позволения работать на ЭВМ (ЕС-1022, помнится) в ночь, и всё равно ответ получался странным и очень сильно меняющимся при малых возмущениях данных (отчего он, собственно, искал причину в погрешностях вычисления). Но после небольшого рассмотрения оказалось, что матрица задачи имеет ранг 1 (то есть решения нет, но, к счастью, и псевдорешение годилось), и расчёт свёлся к нескольким строчкам на Фортране и нескольким миллисекундам времени.