2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3  След.
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение07.06.2021, 21:26 


13/05/16
355
Москва
PhisicBGA в сообщении #1521659 писал(а):
Следовательно, в этом случае, согласно равенству для тринома (1), должно так же прекрасно выполняться и равенство (2), т.е.
равенство $$x_{1}^3+y_{1}^3-z_{1}^3 =0 \eqno (2)$$ Так?

Нет. Если вы аккуратно подставите мои соотношения в своё уравнение, то придёте к уравнению $m^3+w^3+6mwA=9A^3$, где $x_1+y_1=9A^3$. Написанное мною уравнение имеет несколько семейств решений. Например такое
Antoshka в сообщении #1481257 писал(а):
$$\left\{
\begin{array}{lcl}
x_1=\frac{(\sqrt{3}(a-b)^{3/2}-\sqrt{-a^3+3a^2b-3ab^2+33b^3})}{4\sqrt {2}}\\
y_1=\frac{(\sqrt{3}(a-b)^{3/2}+\sqrt{-a^3+3a^2b-3ab^2+33b^3})}{4\sqrt{2}}\\
z_1=\frac{\sqrt{3(a-b)}b}{\sqrt{2}}
\end{array}
\right$$Здесь $a$ и $b$ натуральные взаимно простые числа

Если вы подставите их в $x_1^3+y_1^3=z_1^3$, то получите тождественное равенство нулю. Это я вам к тому пишу, что ВТФ так просто не возьмёшь

 Профиль  
                  
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение07.06.2021, 21:49 


21/05/16
4292
Аделаида
PhisicBGA, ну так как вам новый контрпример?

 Профиль  
                  
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение07.06.2021, 23:03 


06/02/14
186
Antoshka в сообщении #1521661 писал(а):
PhisicBGA в сообщении #1521659 писал(а):
Следовательно, в этом случае, согласно равенству для тринома (1), должно так же прекрасно выполняться и равенство (2), т.е.
равенство $$x_{1}^3+y_{1}^3-z_{1}^3 =0 \eqno (2)$$ Так?

Нет. Если вы аккуратно подставите мои соотношения в своё уравнение, то придёте к уравнению $m^3+w^3+6mwA=9A^3$, где $x_1+y_1=9A^3$. Написанное мною уравнение имеет несколько семейств решений. Например такое
Antoshka в сообщении #1481257 писал(а):
$$\left\{
\begin{array}{lcl}
x_1=\frac{(\sqrt{3}(a-b)^{3/2}-\sqrt{-a^3+3a^2b-3ab^2+33b^3})}{4\sqrt {2}}\\
y_1=\frac{(\sqrt{3}(a-b)^{3/2}+\sqrt{-a^3+3a^2b-3ab^2+33b^3})}{4\sqrt{2}}\\
z_1=\frac{\sqrt{3(a-b)}b}{\sqrt{2}}
\end{array}
\right$$Здесь $a$ и $b$ натуральные взаимно простые числа

Если вы подставите их в $x_1^3+y_1^3=z_1^3$, то получите тождественное равенство нулю. Это я вам к тому пишу, что ВТФ так просто не возьмёшь


Скажите, а это семейство решений - натуральные числа при любых натуральных и взаимно простых числах $a$ и $b$ ?

 Профиль  
                  
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение08.06.2021, 21:09 


06/02/14
186
kotenok gav в сообщении #1521092 писал(а):
PhisicBGA в сообщении #1521037 писал(а):
Спасибо. Контрпример хороший. А не могли бы Вы привести такой же контрпример для частного случая соседних кубов?

Разумеется, нет.
Более того, скажу вам сразу - если вы сводите общий случай к соседним кубам - в вашем доказательстве практически гарантированно есть ошибка. Насколько я помню, случай соседних кубов доказывается довольно тривиально.


Куда уж более тривиальней, чем через старый, добрый бином Ньютона или точнее его разновидность - трином. Но я не об этом. Контрпримеры - это конечно хорошо, но они все касаются общего случая. А что, если общий случай действительно сводится к частному случаю- невозможности решения уравнения Ферма в целых числах для соседних кубов и эта "точка сведения" будет действительно найдена? Будет ли тогда, такое доказательство: общий случай сводится к частному, которое не возможно в целых числах, справедливым?

 Профиль  
                  
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение08.06.2021, 21:51 


13/05/16
355
Москва
PhisicBGA в сообщении #1521693 писал(а):
Скажите, а это семейство решений - натуральные числа при любых натуральных и взаимно простых числах $a$ и $b$ ?

Нет, ибо если бы это было так, то для ВТФ можно было бы привести контр-пример. Если существуют попарно взаимно простые $x_1,y_1,z_1$ натуральные, такие что $x_1^3+y_1^3=z_1^3$,$z_1$ делится на $9$, то они должны удовлетворять указанным мною соотношениям

 Профиль  
                  
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение08.06.2021, 22:44 


06/02/14
186
Antoshka в сообщении #1521841 писал(а):
PhisicBGA в сообщении #1521693 писал(а):
Скажите, а это семейство решений - натуральные числа при любых натуральных и взаимно простых числах $a$ и $b$ ?

Нет, ибо если бы это было так, то для ВТФ можно было бы привести контр-пример. Если существуют попарно взаимно простые $x_1,y_1,z_1$ натуральные, такие что $x_1^3+y_1^3=z_1^3$,$z_1$ делится на $9$, то они должны удовлетворять указанным мною соотношениям


Да, мудрёно...Спасибо.

 Профиль  
                  
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение08.06.2021, 22:45 


21/05/16
4292
Аделаида
PhisicBGA в сообщении #1521836 писал(а):
Будет ли тогда, такое доказательство: общий случай сводится к частному, которое не возможно в целых числах, справедливым?

Да (если вы докажете и частный случай тоже).

 Профиль  
                  
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение09.06.2021, 20:48 


06/02/14
186
kotenok gav в сообщении #1521853 писал(а):
PhisicBGA в сообщении #1521836 писал(а):
Будет ли тогда, такое доказательство: общий случай сводится к частному, которое не возможно в целых числах, справедливым?

Да (если вы докажете и частный случай тоже).


Что не так с доказательством частного случая с помощью тринома?

 Профиль  
                  
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение09.06.2021, 21:39 


21/05/16
4292
Аделаида
PhisicBGA в сообщении #1521014 писал(а):
Но в любых целых числах $a, c$ равенство (7) не разрешимо.

Почему?

 Профиль  
                  
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение13.07.2021, 06:03 


27/03/12
449
г. новосибирск
Так как $z-y= d_2^3$, формула Абеля для сомножителя числа $x = u_2d_2$, то противоречие из (4) исчезает.

 Профиль  
                  
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение18.07.2021, 19:40 
Аватара пользователя


12/10/16
637
Almaty, Kazakhstan
PhisicBGA в сообщении #1521836 писал(а):
А что, если общий случай действительно сводится к частному случаю- невозможности решения уравнения Ферма в целых числах для соседних кубов

Когда-то и я задавался этим вопросом :
Soul Friend в сообщении #1253862 писал(а):
знаю, что достаточно одного контрпримера чтобы опровергнуть ВТФ3, но я не встречал до этого объяснения этому:
Soul Friend в сообщении #1253586 писал(а):
если доказать частный случай $(b+1)^3-b^3 \neq z^3$ то автоматом докажем и $x^3-y^3$ ?

как понять внутреннюю взаимосвязь, почему доказательство частного случая, где $x$ больше $y$ на единицу, распространяется на все другие значения $x$ и $y$ ?

 Профиль  
                  
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение14.11.2021, 09:05 


06/02/14
186
kotenok gav в сообщении #1522008 писал(а):
PhisicBGA в сообщении #1521014 писал(а):
Но в любых целых числах $a, c$ равенство (7) не разрешимо.

Почему?


Ну, что ж, давайте по порядку. Имеем известное равенство для тринома 3- ей степени
$$(x+y-z)^3=(x^3+y^3-z^3)+3(z-y)(z-x)(x+y) \eqno (1)$$, где $x,y,z$-целые числа.
Предположим, что целые числа $x_1,y_1,z_1$ - взаимно простые, $z_1>x_1; z_1>y_1; x_1+y_1>z_1 $, $z_1 и x_1$ - не четные числа, а $y_1$ - чётное число и для этих чисел выполняется равенство$$x_{1}^3+y_{1}^3-z_{1}^3 =0 \eqno (2)$$
Тогда, согласно равенству для тринома (1) должно выполнятся и равенство$$(x_1+y_1-z_1)^3=3(z_1-y_1)(z_1-x_1)(x_1+y_1) \eqno (3)$$
Поскольку $z_1>y_1$ , то обозначим $z_1-y_1=m;z_1-x_1=\Delta $ , где $m,\Delta $ - положительные целые числа .
Тогда равенство (3) будет$$(x_1-m)^3=3m(\Delta)(2x_1+\Delta-m)  \eqno (4)$$
В частном случае теоремы Ферма для соседних кубов $z_1-y_1 =m=1$ и тестовое равенство (4) принимает следующий вид
$$(x_1-1)^3=3(\Delta)(2x_1+\Delta-1) \eqno (5)$$
Для этого частного случая замечаем, что согласно равенству (2), которое в этом случае будет$$x_{1}^3+(z_{1}-1)^3-z_{1}^3 =0 \eqno (6)$$ число $ x_1 $ всегда будет не чётным, а в равенстве (5) одна из скобок в правой части будет чётным числом, вне зависимости от чётности $z_1$.
Поэтому, без потери общности, положим $\Delta = z_1 - x_1$ - чётное число , $ x_1 - 1= 6k $, где $ k$- целое число.
Тогда равенство (5) будет$$(6k)^3=3(\Delta)(12k+\Delta+1) \eqno (7)$$
Рассмотрим это равенство:
1.Пусть $\Delta=2^3$.
Тогда равенство (7) будет $$(3k)^3=12(3k)+3^3 $$
$$(3)^3(k)^3=(3)^2(4)k+3^3 $$
$$3(k)^3=4k+3 $$
$$k[3(k)^2-4]=3 $$
Поскольку $3$ - число простое, то возможны 2-а варианта:
а) $k=1$.Тогда получаем $-1=3$
b)$k=3$.Тогда получаем $23=1$
В обоих случаях равенство(7)в целых числах при данном условии не выполняется.
2.Пусть $\Delta=(2d)^3$,где $d$-любое целое число.
Тогда равенство (7) будет $$(3k)^3=12(d)^3(3k)+3(d)^3[(2d)^3+1] $$
И вот тут начинаются неопределенности и классическая теория чисел в бессилии разводит руками.

И вдруг, совершенно чудесным образом, нам в голову приходит замечательная идея (хотя, на самом деле, за нашей спиной стоит теория Структурных чисел, которая по непонятным причинам была отправлена на этом форуме в "Пургаторий" и поэтому приходится объясняться метафизическими терминами).
И так - суть идеи.
Имеем равенство (7) $$(6k)^3=3(\Delta)(12k+\Delta+1) $$ или
$$2(6)^2(k)^3=(\Delta)(12k+\Delta+1) $$
Сделаем такую подстановку: прибавим к обеим частям этого равенства величину $2k(\Delta)^2$
Получим $$2(6)^2(k)^3+2k(\Delta)^2=(\Delta)(12k+\Delta+1)+2k(\Delta)^2 $$
$$2k[(6)^2(k)^2+(\Delta)^2]=(\Delta)[12k+2k(\Delta)  +(\Delta)+1] $$


Рассмотрим два случая:
1.Число $\Delta$ пропорционально числу $2k$.
Тогда, из за единицы в скобках правой части равенства, в целых числах это равенство не выполняется.
2.Число $\Delta$+1 пропорционально числу $k$
Тогда сумма в скобках левой части равенства не может быть пропорциональна $\Delta $ и это равенство, опять же, в целых числах не выполняется.
Всё! Теорема Ферма для частного случая соседних кубов доказана - легко и просто.
Надеюсь, теперь Вам всё понятно, уважаемый kotenok gav?



Soul Friend в сообщении #1526498 писал(а):
PhisicBGA в сообщении #1521836 писал(а):
А что, если общий случай действительно сводится к частному случаю- невозможности решения уравнения Ферма в целых числах для соседних кубов

Когда-то и я задавался этим вопросом :
Soul Friend в сообщении #1253862 писал(а):
знаю, что достаточно одного контрпримера чтобы опровергнуть ВТФ3, но я не встречал до этого объяснения этому:
Soul Friend в сообщении #1253586 писал(а):
если доказать частный случай $(b+1)^3-b^3 \neq z^3$ то автоматом докажем и $x^3-y^3$ ?

как понять внутреннюю взаимосвязь, почему доказательство частного случая, где $x$ больше $y$ на единицу, распространяется на все другие значения $x$ и $y$ ?


Если этот метод будет работать и в общем случае, тогда становится все понятно: ключ к доказательству частного случая одновременно является и ключом к доказательству общего случая теоремы Ферма. Именно так надо понимать "внутреннюю взаимосвязь, почему доказательство частного случая, где $x$ больше $y$ на единицу, распространяется на все другие значения $x$ и $y$ ".
Так ли это или не так в данном случае, можете проверить сами с помощью той подстановки, что сработала при доказательстве частного случая соседних кубов.

 Профиль  
                  
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение14.11.2021, 09:16 


21/05/16
4292
Аделаида
PhisicBGA в сообщении #1539121 писал(а):
В частном случае соседних кубов $z_1-y_1 =m=1$

А в общем?
Но ладно, давайте сначала разберёмся с этим "частным".
PhisicBGA в сообщении #1539121 писал(а):
Поэтому, без потери общности, положим $\Delta$=z_1-x_1-чётное число

Почему (и научитесь формулы оформлять, пожалуйста)?
PhisicBGA в сообщении #1539121 писал(а):
1.Пусть $\Delta=2^3$.

PhisicBGA в сообщении #1539121 писал(а):
2.Пусть $\Delta=(2d)^3$,где $d$-любое целое число.

А почему $\Delta$ - куб?

 Профиль  
                  
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение16.11.2021, 20:25 


06/02/14
186

(Оффтоп)

kotenok gav в сообщении #1539122 писал(а):
PhisicBGA в сообщении #1539121 писал(а):
Поэтому, без потери общности, положим $\Delta$=z_1-x_1-чётное число

Почему (и научитесь формулы оформлять, пожалуйста)?



Вы, откуда взяли такую запись? В моём тексте такого огреха нет. Если это Ваш "ляп", то будьте любезны извинится за своё высокомерное замечание, иначе никогда не станете взрослым и серьёзным котом.





kotenok gav в сообщении #1539122 писал(а):
PhisicBGA в сообщении #1539121 писал(а):
В частном случае соседних кубов $z_1-y_1 =m=1$

А в общем?


Да, никаких проблем - теперь уже никаких!
Имеем известное равенство для тринома 3- ей степени
$$(x+y-z)^3=(x^3+y^3-z^3)+3(z-y)(z-x)(x+y) \eqno (1)$$, где $x,y,z$-целые числа.
Предположим, что целые числа $x_1,y_1,z_1$ - взаимно простые, $z_1>x_1; z_1>y_1; x_1+y_1>z_1 $, $z_1 и x_1$ - не четные числа, а $y_1$ -чётное число
и для этих чисел выполняется равенство$$x_{1}^3+y_{1}^3-z_{1}^3 =0 \eqno (2)$$
Тогда, согласно равенству для тринома (1) должно выполнятся и равенство$$(x_1+y_1-z_1)^3=3(z_1-y_1)(z_1-x_1)(x_1+y_1) \eqno (3)$$
Поскольку $x_1,y_1,z_1$ - целые числа и $z_1 ; x_1$ - не четные числа, а $y_1$ -чётное число ,то будет справедливо равенство $(x_1+y_1-z_1)^3 = [x_1+(-z_1)-(-y_1)]^3 $. Поэтому, без потери общности, положим
$z_1 - y_1=m$ - не чётное число; $z_1 - x_1=\Delta $ - чётное число.
Тогда равенство (3) будет$$(x_1-m)^3=3m(\Delta)(2x_1+\Delta-m)  \eqno (4)$$
Сделаем такую подстановку: прибавим к обеим частям этого равенства величину $3(x_1-m)(\Delta)^2$
Получим $$(x_1-m)^3+3(x_1-m)(\Delta)^2=3m(\Delta)(2x_1+\Delta-m)+3(x_1-m)(\Delta)^2  $$ или
$$(x_1-m)[(x_1-m)^2+3(\Delta)^2]=3(\Delta)[m(2x_1+\Delta-m)+(x_1-m)(\Delta)]  \eqno (5)$$

Из этого равенства следует, что разность $(x_1-m)$ должна быть пропорциональна величине $3(\Delta)$. Поскольку произведение $m(2x_1+\Delta-m)$ в квадратных скобках в правой части равенства - число не чётное, то оно может быть пропорционально чётному числу $\Delta$ только с дробным коэффициентом, где в знаменателе дроби содержится чётная часть числа $\Delta$.
Значит, в целых числах равенство (5), а следовательно и равенство (3),из которого это равенство было получено, не выполняются.
Следовательно, согласно равенству для тринома (1), не может выполняться в целых числах и равенство (2).

Как мы видим, и в общем случае теоремы Ферма для 3-ей степени работает эта чудесная подстановка. Случайно? Как говорят физики,- "легко творить чудеса, имея спрятанную в рукаве добротную научную теорию".

 Профиль  
                  
 
 Re: Доказательство ВТФ для 3-ей степени
Сообщение16.11.2021, 21:23 
Заслуженный участник


20/12/10
8858
PhisicBGA в сообщении #1539498 писал(а):
Из этого равенства следует, что разность $(x_1-m)$ должна быть пропорциональна величине $3(\Delta)$.Поскольку произведение $m(2x_1+\Delta-m)$ в квадратных скобках в правой части равенства - число не чётное, то оно может быть пропорционально чётному числу $\Delta$ только с дробным коэффициентом, где в знаменателе дроби содержится чётная часть числа $\Delta$.
Мутный текст, который ничего не доказывает.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 44 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Antoshka


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group