2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение08.01.2021, 18:58 
Заслуженный участник


17/09/10
2133
Andrey A в сообщении #1499711 писал(а):
P.S. Добавлю еще, что из $a^2-b^2+c^2=1$ следует
$(a^2-b^2-c^2)^2-(2bc)^2+(2ac)^2=1$
$(a^2+b^2-c^2)^2-(2ab)^2+(2ac)^2=1$
Значит, из любого решения можно строить бесконечные серии решений.

Красивое наблюдение. Сразу бы так. Континуанты в это теме - не стоит.

nnosipov, замечание о параметрах справедливое, но в условии задачи Кармайкл спрашивал о 2-х параметрах, так что будем следовать (и следуем) в решении формулировке классика.

У меня ещё одна задача. Предлагается найти 2-параметрическое решение в натуральных числах $x,y,z,r,u,v,w,S$ системы уравнений
$x^2+y^2+z^2=S^2, r^2+u^2+v^2+w^2=S^2$

 Профиль  
                  
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение08.01.2021, 23:03 
Заслуженный участник
Аватара пользователя


21/11/12
1880
Санкт-Петербург
scwec в сообщении #1499729 писал(а):
системы уравнений
$x^2+y^2+z^2=S^2, r^2+u^2+v^2+w^2=S^2$


Возьмем $S=A^2+B^2+C^2=E^2+F^2+G^2+H^2.$ Для него выполняется:

$S^2=\left ( 2AC \right )^2+\left ( 2BC \right )^2+\left ( A^2+B^2-C^2 \right )^2=$ $\left ( 2EH \right )^2+\left ( 2FH \right )^2+\left ( 2GH \right )^2+\left ( E^2+F^2+G^2-H^2 \right )^2.$

Дело сводится к равенству сумм $3$-х и $4$-х квадратов. Можно так:

$S=(2bn)^2+(2dn)^2+(a^2-b^2+c^2-d^2+k^2+n^2 )^2=$ $(2an)^2+(2cn)^2+(2kn)^2+(a^2-b^2+c^2-d^2+k^2-n^2 )^2$ (тождество).

Исправлено.09.01

Ну, а снизить кол-во параметров до двух не проблема. Вам ведь не нужно общее решение.

P.S.
Ограничение по количеству параметров содержательно для уравнений в рациональных числах, в целых же такое требование мне кажется странным. Иной раз с водой можно выплеснуть и младенца.
$(2ab+1)^2-(ab^2+a+b)^2+(ab^2-a+b)^2=1.$ Континуанты, обрезанные до двух знаков. Можно было обрезать до трех знаков (если хочется посложнее), или до семи. Что с того? Неполное решение остается неполным.

 Профиль  
                  
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение09.01.2021, 13:49 
Заслуженный участник


17/09/10
2133
Решение Andrey A принимается.
А в виду имелось получение симпатичного тождества
$(1+a+b+ab+a^2+b^2)^2\equiv((a+b)(1+a))^2+((a+b)(1+b))^2+(1+a+b-ab)^2\equiv(a(a+b+1))^2+(b(a+b+1))^2+(a+b+1)^2+(a+b+ab)^2$

 Профиль  
                  
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение09.01.2021, 14:15 
Заслуженный участник
Аватара пользователя


21/11/12
1880
Санкт-Петербург
scwec в сообщении #1499857 писал(а):
$(1+a+b+ab+a^2+b^2)^2\equiv((a+b)(1+a))^2+((a+b)(1+b))^2+(1+a+b-ab)^2\equiv(a(a+b+1))^2+(b(a+b+1))^2+(a+b+1)^2+(a+b+ab)^2$

Так там равенство. Непонятно зачем значки сравнения. Хотя, верно по любому модулю, ошибки в том нет.

 Профиль  
                  
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение09.01.2021, 15:41 
Аватара пользователя


26/02/14
497
so dna
scwec в сообщении #1499729 писал(а):
Предлагается найти 2-параметрическое решение в натуральных числах $x,y,z,r,u,v,w,S$ системы уравнений
$x^2+y^2+z^2=S^2, r^2+u^2+v^2+w^2=S^2$

Из вашего тождества легко получить и 2-х параметрическое решение системы
$S^2=p^2+q^2=x^2+y^2+z^2=r^2+u^2+v^2+w^2$

$(b^4+2ab^3+4a^2b^2+2a^3b+a^4)^2=\\
(2ab(b^2+ab+a^2))^2+((b+a)^2(b^2+a^2))^2=\\
((b-a)(b+a)^3)^2+(2ab(b+a)^2)^2+(2ab(b^2+ab+a^2))^2=\\
(a^3(a+2b))^2+(ab(a+2b)(b+2a))^2+(b^2a(a+2b))^2+(b(b^3+2ab^2-2a^3))^2$

 Профиль  
                  
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение09.01.2021, 16:58 
Заслуженный участник


17/09/10
2133
Andrey A
$\equiv$ тождественное равенство, общепринятый знак, чтобы обратить внимание на то, что равенство выполняется при любых значениях переменных. Используется по желанию.
Rak so dna в сообщении #1499884 писал(а):
Из вашего тождества легко получить и 2-х параметрическое решение системы
$S^2=p^2+q^2=x^2+y^2+z^2=r^2+u^2+v^2+w^2$

Да, всё верно.
Замечу также, что по словам А.Н.Колмогорова простые тождества могут стоять за построением сложных теорий.

 Профиль  
                  
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение09.01.2021, 17:37 
Заслуженный участник
Аватара пользователя


21/11/12
1880
Санкт-Петербург
Интересно. Я-то думал, что значек придумал Гаусс для своей теории сравнений. Ему советовали писать "$=$" с припиской $(\mod m)$, но он во избежании путаницы оставил "$\equiv$". И действительно началась путаница )

(Оффтоп)

Михаил Ильич тут же пошел к капитану узнавать, что нам хотят сказать американцы. Оказалось, они предупреждали насчет шторма. По их сведениям, в самом скором времени должен был разбушеваться шторм.
– Провокация или нет? – спросил самого себя капитан.
– Конечно, провокация! – уверенно заявил генерал.
И действительно, шторм оказался неуместной провокацией. Нас бросало туда-сюда часов десять.

А.Житинский. Подданный Бризании.

 Профиль  
                  
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение12.02.2021, 23:20 
Заслуженный участник


17/09/10
2133
Приведу пример для суммы пяти биквадратов.
$12^4+16^4+24^4+36^4+63^4=65^4$

Предлагаю найти 2-параметрическое решение в натуральных числах для уравнения $x^4+y^4+z^4+u^4+v^4=w^4$

 Профиль  
                  
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение13.02.2021, 10:19 


23/01/07
3419
Новосибирск

(Оффтоп)

scwec в сообщении #1498825 писал(а):
Интересно, как выглядит полное решение. Кармайкл этого, правда, не спрашивает.
Задача из упражнений в его книге "Diophantine analysis".

Предполагаю, что данная задача у Кармайкла была как-то увязана с простыми-близнецами.
Например, если $p=x+1; q=x-1$ - простые, то их произведение нельзя представить в виде разности квадратов двух целых чисел более, чем двумя способами: $$N=x^2-1=z^2-y^2$$
$$N=p\cdot q=(\frac {p+q}{2})^2-(\frac {p-q}{2})^2 = (\frac {pq+1}{2})^2-(\frac {pq-1}{2})^2$$

 Профиль  
                  
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение13.02.2021, 17:56 
Аватара пользователя


26/02/14
497
so dna
scwec в сообщении #1504892 писал(а):
Предлагаю найти 2-параметрическое решение в натуральных числах для уравнения $x^4+y^4+z^4+u^4+v^4=w^4$
$(4a^4+b^4)^4 = (4a^4-b^4)^4 + (4a^3b)^4 + (4a^3b)^4 + (2ab^3)^4 + (2ab^3)^4$

 Профиль  
                  
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение13.02.2021, 19:40 
Заслуженный участник


17/09/10
2133
Батороев в сообщении #1504921 писал(а):
Предполагаю, что данная задача у Кармайкла была как-то увязана с простыми-близнецами.

В цитируемой выше книге Кармайкла простые числа близнецы не упоминаются.

Параметрическое решение,предложенное Rak so dna, верное.
Но из него не получается пример, мной приведенный.
Найдите 2-параметрическое решение, из которого этот пример получится при каком-то значении параметров.

 Профиль  
                  
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение14.02.2021, 18:18 


23/01/07
3419
Новосибирск

(Оффтоп)

scwec в сообщении #1504986 писал(а):
В цитируемой выше книге Кармайкла простые числа близнецы не упоминаются.

Тогда могло быть привязано к псевдопростым-близнецам (псевдопростым по основанию $2$). Впрочем, это всего лишь мои догадки. И дальше мешать не буду... но буду с интересом следить за дальнейшим рассмотрением темы.

 Профиль  
                  
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение15.02.2021, 00:28 


20/04/10
1776
$ 12^4(x^2+10 x y-3 y^2)^4+24^4 (x^2-4 x y-3 y^2)^4+12^4 (3 x^2+2 x y-9 y^2)^4+
16^4 (x^2+3 y^2)^4+63^4 (x^2+3 y^2)^4=65^4 (x^2+3y^2)^4$

 Профиль  
                  
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение15.02.2021, 11:21 
Заслуженный участник


17/09/10
2133
lel0lel, да, это в точности предполагаемый ответ.
Теперь увеличим число слагаемых.
Предлагается найти шесть различных биквадратов, сумма которых тоже биквадрат.
Кстати, это также из упражнений книги Кармайкла

 Профиль  
                  
 
 Re: Уравнение x^2+y^2-z^2=1
Сообщение26.02.2021, 15:03 
Заслуженный участник


17/09/10
2133
scwec в сообщении #1505109 писал(а):
Предлагается найти шесть различных биквадратов, сумма которых тоже биквадрат.

Вот пример для шести биквадратов в левой части и одним в правой части
$90^4+135^4+150^4+180^4+272^4+300^4=353^4$.
Примеров бесконечно много.
Предлагается найти 2-параметрическое решение в целых числах уравнения $x^4+y^4+z^4+u^4+w^4+s^4=r^4$,
из которого следует приведенный пример при некотором значении параметров.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 34 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group