А объяснений не хватает во всех книгах, уверяю вас!
По этому поводу две мысли.
1) То, что в какой-то книге что-то кому-то непонятно, может быть по разным причинам. Или человек сам непонятливый, или знаний пока недостаточно, или, что весьма часто, книга правда плохая. Или еще что. Или подумать подольше надо. (Я по таким вещам еще в начале своего пребывания на форуме целый трактат писал, потом забросил; поищите). Короче, непонимание само по себе ничего, кроме факта непонимания данным человеком данной книги и в данный момент, не означает.
2) Есть книги очень понятные. Калужнин --- выдающийся пример. Попробуйте, Вам понравится !
-- 07.02.2021, 10:13 --осилить книгу, которая еще не университетская,
Вообще-то то, что написано во второй главе Верещагина-Шеня, в программу мехмата МГУ не входит. Разве что в рамках спецкурса. Например, есть такое пособие Архангельский, Канторовская теория множеств.
Собственно, оно в математике почти нигде не нужно, разве что с точки зрения любопытства. Достаточно, и то чрезвычайно изредка, уметь пользоваться т.наз. леммой Цорна. (Ну, про нее я мнение коллеги писал выше...).
Основные факты в этой области такие. Понятие вполне упорядоченного множества. Изоморфизм вполне упорядоченных множеств, порядковые типы. Понятие о трансфинитных числах. Доказательство теоремы о полном упорядочении, с помощью аксиомы выбора (которая считается очевидной). Лемма Цорна, принцип максимума в разных формах. Трансфинитная индукция, построение по индукции. Теорема о сравнении мощностей. Теорема, что сумма любой бесконечной мощности с собой, а также произведение на себя --- та же самая мощность. (Ну, вроде как всё...).
Как лично я этим овладел. Лет в 45 стал я читать Бурбаков. (Зачем --- отдельная песня, тут писать неуместно. На тот момент я уже лет 20 был кандидат и отчасти даже состоявшийся математик. Ладно, чё про себя любимого разглагольствовать...) Сначала первый том, "Теория множеств". Первую главу посмотрел, гляжу --- некий формализм, какие-то формулы, термы, ну её побоку, совершенно вникать не стал. И вторую примерно так же, кроме последнего параграфа, который просмотрел повнимательнее (там про эквивалентности, разбиение на классы и т.д.). Самое интересное в третьей. Сначала там про частично упорядоченные множества идет много общих концепций. Просмотрел их описания, ознакомился с утверждениями про них, и доказал их, при необходимости, самостоятельно (по схеме прочитали теорему, закрыли книжку, доказали сами). Тем самым я некие вещи, которые в результате предыдущей жизни были в голове, которые явно, а которые неявно, как бы перебрал, перетряхнул и внимательно уложил опять. Примерно как большую кучу шмотья перебрать и разложить по полочкам. А затем идет теория вполне упорядоченных множеств.
(Сейчас в этом экскурсе в мою математическую биографию придется сделать перерыв.)