Нужны какие-то дополнительные аргументы.
Да, конечно, нужны, и ещё бы их притом не было уже условные сто лет как.
Если указать некоторые:
1. Мы любим

, это самая основа возведения в степень, ну плюс

. Как известно, это даёт нам для полугруппы полностью определённую степень с показателем из

. Для моноида это даёт нам добавить

для всех

, потому что это наиболее единообразно. Мы могли бы начать сомневаться в нулевой степени идемпотентных элементов, но это не даст нам определения, которое равноприменимо к любому моноиду и в каком-то смысле равномерно —

записывается через язык моноидов и наиболее простым образом. Это всё остаётся верным для любого моноида безотносительно к тому, какие на нём ещё могут быть структуры. Несмотря на то, что мы можем добавить отрицательные и нецелочисленные показатели, во всех прочих ситуациях в математике мы не начинаем внезапно сверлить в хорошо определённой ранее функции дырочки про её доопределении.
1a. Мы рассматриваем топологические кольца, где операции непрерывны. Это не конфликтует с разрывом у вещественно-вещественнозначного возведения в степень, потому что возведение в степень я лично никогда не видел входящим в сигнатуру кольца. Входят туда как правило только сложение и умножение — с них и спрос — ну а если входят смена знака и мультипликативное обращение, то опять же это никак не открывает нам пути требовать непрерывность всюду и от возведения в степень. (Так что мы можем определить её в точке разрыва.)
2. Всевозможные биномы Ньютона, мощности множества отображений, и явление

единичным многочленом (если учесть как многочлены ведут себя при подстановке какого-нибудь значения, в том числе 0). Почему-то они часто считаются недостойными говорить за всю математику, де они дискретные, полнота их одностороння и всё такое — но покажите мне специалиста, который вот действительно хочет считать, что математику можно независимо задать по кускам. Разумно стремиться унифицировать всё, что можно унифицировать, а не придумывать по десять вариантов одного и того же для разных областей. И действительно подобных проблем кажется практически нет. (Вопрос о конструктивизме, интуиционизме — отдельный, я не готов ничего по этому поводу сказать, но к счастью он не должен изменить основной аргументации в конкретно этом случае. И в конце концов мы почти всегда можем строить модели одного в другом.) Потому
даже если бы пределы закрывали нам путь, всё равно стоило бы что-то попробовать переформулировать, чтобы улучшить ситуацию.
-- Пн янв 18, 2021 00:04:12 --Нет, желание сохранить не менее симпатичное утверждение, что функция не определена там, где не имеет никакого определённого значения.
Похоже, вы вкладываете разный смысл в то и другое. Могли бы вы пояснить, куда какой хотя бы примерно?
-- Пн янв 18, 2021 00:16:15 --Если я правильно понимаю, вы предполагаете, что «дух» возведения в степень
как оно уже давно понимается недостаточно сильный, чтобы установить однозначно значение

, и нужны дополнительные аргументы, не связанные с ним непосредственно. На мой взгляд, все хорошие аргументы связаны с ним непосредственно. Есть плохие аргументы за, типа

, которые как раз не связаны непосредственно — они используют пределы, которые как раз изначально и навели тень на плетень.
(Есть амбивалентный аргумент, что если мы возьмём

аналитическими в нуле, и также

на некотором интервале

и

при

, то всё же

. Я бы предложил его тоже не включать в ядро аргументации, потому что во-первых условия требуются довольно сильные (кроме аналитичности ещё пара), и во-вторых он опять же делает видимость того, что пределы здесь важны, и вероятно что они что-то изначально нам запрещали.)
Но вообще, возвращаясь к своему вопросу об уточнении, я бы сказал, что то, что вы написали — не очень аргумент. Это просто пресуппозиция ничего не делать, когда ничего не известно (ничего против неё не имею), тогда как предполагается, что придерживающийся аргумента против определения

знаком с как минимум какими-то аргументами за и решил, что они недостаточны, исходя из чего-то, а не просто так. Это что-то и не было приведено — жалко.