2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3
 
 Re: Подготовка к магистратуре
Сообщение03.08.2020, 10:40 
Заслуженный участник
Аватара пользователя


26/01/14
4867
Xaositect в сообщении #1477086 писал(а):
В данной конкретной задаче это все совершенно не нужно.
Кстати да. Начинать надо с выписывания нескольких первых членов этой последовательности; может быть, закономерность будет очевидной, и тогда её просто можно доказать по индукции.

 Профиль  
                  
 
 Re: Подготовка к магистратуре
Сообщение03.08.2020, 18:53 
Заслуженный участник


18/01/15
3254
Sicker в сообщении #1477076 писал(а):
1 - это дискретный вариант дифференциального уравнения второго порядка, которые изучают на втором курсе мехмата. Т.е. школьник в жизни не догадается, что решение надо искать в виде комплексных экспонент
Ну что Вы... Школоло выпишет первые члены последовательности: 0,1,2,3,4, ... , а потом докажет по индукции, что $a_n=n+1$. А особо умное и начитанное школоло даже знает формулу для чисел Фибоначчи, и как она доказывается, и как вообще решаются такие задачи, без дифуров. Но, судя по общей незатейливости списка задач, расчет был именно на простейший вариант ($n+1$, по индукции).

-- 03.08.2020, 17:55 --

Да, есть еще такая старенькая брошюра: А.И.Маркушевич, Возвратные последовательности. А также то, что коллега выше указал.

 Профиль  
                  
 
 Re: Подготовка к магистратуре
Сообщение03.08.2020, 21:39 
Заслуженный участник


20/12/10
9138
vpb в сообщении #1477147 писал(а):
Да, есть еще такая старенькая брошюра:
Да, тоже про нее вспомнил. В те годы, когда о википедии и роликах на YouTube даже и намека не было, серия "Популярные лекции по математике" дорогого стоила. А метод индукции прекрасно изложен в брошюре Соминского той же серии.

-- Вт авг 04, 2020 01:52:40 --

vpb в сообщении #1477147 писал(а):
Школоло выпишет первые члены последовательности:
Вот, кстати, это может очень продуктивно: сегодня случайно проглядывал задачи отсюда https://www.egmo.org/egmos/egmo9/paper-day2-English.pdf так вот, задача 6 прекрасно иллюстрирует полезность этого приема.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 33 ]  На страницу Пред.  1, 2, 3

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Osmiy


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group