Из книги В. Серпинского «Что мы знаем и чего не знаем о простых числах» ((Москва - Ленинград: Государственное издательство физико-математической литературы, 1963, стр. 14) :
"В связи с теоремой 3 заметим, что в 1850 г. П. Л. Чебышев доказал более сильную теорему (так называемый постулат Бертрана), согласно которой для натуральных
между
и
содержится хотя бы
одно простое число. Отсюда следует, что в теореме 3 число
можно заменить числом
. В настоящее время имеется элементарное доказательство этой теоремы, но оно довольно длинное [W. Sierpinsski, Arifmetyka teoretyczna, Wyd. 2, Warszawa, 1959, str. 88-94], [1]. Можно также доказать, что для натуральных
между
и
содержится по меньшей мере
два простых числа [W. Sierpinsski, Teoria liczb, II, Warszawa, 1959, str. 400], [2]."
Из книги Бухштаба «Теория чисел»:
"2.3 Теоремы Чебышева.
... В следующем утверждении, носящем название «постулат Бертрана», по-существу содержится оценка сверху расстояния между двумя соседними простыми числами
и
. Оно, в частности, утверждает, что
. Эта, и даже более сильная, теорема впервые была доказана в 1852 г. П. Л. Чебышевым.
Теорема 2.4. Для любого натурального
существует простое число
, удовлетворяющее неравенствам
."
Вопрос: по меньшей мере
одно или
два простых числа содержится между
и
?
Может кто сталкивался с этим вопросом. И не удаётся пока найти, скачать книги [1], [2].