2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3
 
 Re: Сопротивление усеченного конуса-пообсуждаем?
Сообщение11.08.2019, 16:51 
Аватара пользователя
Таки нашел. Вот здесь https://core.ac.uk/download/pdf/92480531.pdf детальное описание результатов численных расчетов по данной теме.

 
 
 
 Re: Сопротивление усеченного конуса-пообсуждаем?
Сообщение12.08.2019, 18:30 
Аватара пользователя
Munin в сообщении #1409709 писал(а):
reterty в сообщении #1409698 писал(а):
единственной "изюминкой" данной задачи можно "с натяжкой" считать разрешение вопроса о том, остается ли сопротивление идеального конуса конечным или нет

А разве это вопрос? Разумеется, бесконечным.

Уважаемый Munin! Поясните, пожалуйста, как Вы пришли к такому выводу (т.е. что дифференциальная особенность даст особенность (в сопротивлении) при интегрировании)

 
 
 
 Re: Сопротивление усеченного конуса-пообсуждаем?
Сообщение12.08.2019, 19:07 
Аватара пользователя
reterty в сообщении #1410035 писал(а):
Поясните, пожалуйста, как Вы пришли к такому выводу
Тоже мне, бином Ньютона. Подсчет по слоям дает меньшее значение и все равно бесконечность (расходимость интеграла)

 
 
 
 Re: Сопротивление усеченного конуса-пообсуждаем?
Сообщение12.08.2019, 20:10 
Аватара пользователя
reterty в сообщении #1410035 писал(а):
Поясните, пожалуйста, как Вы пришли к такому выводу

Соображениями размерности пользоваться умеете?

 
 
 
 Re: Сопротивление усеченного конуса-пообсуждаем?
Сообщение12.08.2019, 21:07 
Аватара пользователя
Munin в сообщении #1410044 писал(а):
reterty в сообщении #1410035 писал(а):
Поясните, пожалуйста, как Вы пришли к такому выводу

Соображениями размерности пользоваться умеете?

На первый взгляд $R=\rho\frac{l}{r_1r_2}f(l/r_1, r_1/r_2)$. Из соображений симметрии понятно, что радиусы должны входить в знаменатель дроби симметрично. Но ведь симметрия будет допускать и следующий инвариант: $r_1^2+r_2^2$

 
 
 
 Re: Сопротивление усеченного конуса-пообсуждаем?
Сообщение12.08.2019, 21:38 
Аватара пользователя
Изображение

Возьмите конус со сферическими основаниями. Вы уже знаете, что при сферических основаниях эквипотенциали симметричны, а линии тока радиальны.
1. Уменьшите этот конус пропорционально в $r_1/r_2$ раз. Во сколько раз изменится его сопротивление?
2. Приклейте уменьшенный конус к предыдущему. Повторить до бесконечности.

 
 
 
 Re: Сопротивление усеченного конуса-пообсуждаем?
Сообщение15.08.2019, 10:38 
Аватара пользователя
Кстати, сопротивление проводящего шара, при диаметрально противоположном расположении абсолютно точечных контактов, также может быть вычислено аналитически путем интегрирования по элементарным слоям и дает бесконечность. Конечное значение сопротивления в данном случае реализуется лишь за счет учета конечных границ контакта между шаром и электродами.

 
 
 
 Re: Сопротивление усеченного конуса-пообсуждаем?
Сообщение15.08.2019, 11:04 
Аватара пользователя
reterty в сообщении #1410484 писал(а):
Кстати, сопротивление проводящего шара, при диаметрально противоположном расположении абсолютно точечных контактов, также может быть вычислено аналитически путем интегрирования по элементарным слоям и дает бесконечность
Это правильный ответ, но само вычисление неверно в силу тех же причин, что и для усеченного конуса.

 
 
 
 Re: Сопротивление усеченного конуса-пообсуждаем?
Сообщение15.08.2019, 11:12 
Аватара пользователя
Red_Herring в сообщении #1410487 писал(а):
Это правильный ответ, но само вычисление неверно в силу тех же причин, что и для усеченного конуса.

Я выбирал слои не в виде бесконечно тонких шаровых слоев а в виде элементарных сегментов (взаимно перпендикулярные "меридианы и параллели")

 
 
 
 Re: Сопротивление усеченного конуса-пообсуждаем?
Сообщение15.08.2019, 11:46 
Аватара пользователя
reterty в сообщении #1410492 писал(а):
Я выбирал слои не в виде бесконечно тонких шаровых слоев а в виде элементарных сегментов (взаимно перпендикулярные "меридианы и параллели")

Если вы имеете в виду шар , то он трехмерен, и слои д.б. трехмерными, т.ч. опишите их
Если же вы имеете в виду поверхность шара, то она называется сфера, и там послойный аналитический подсчет возможен (также как и для поверхности усеченного конуса (и вообще любой поверхности вращения, усеченной двумя плоскостями, перпендикулярными оси)

 
 
 
 Re: Сопротивление усеченного конуса-пообсуждаем?
Сообщение15.08.2019, 12:07 
Аватара пользователя
Прошу прощения. Неправильно "расслоил"

 
 
 [ Сообщений: 41 ]  На страницу Пред.  1, 2, 3


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group