2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 12:30 


17/07/19

55
Евгений Машеров
Евгений Машеров в сообщении #1408623 писал(а):
По определению, колебание величина неотрицательная (как супремум неотрицательных величин).

В определении Зорича колебания функции на множестве нету требования неотрицательности. Я подробно расписал этот случай в п.1 стартового сообщения. Колебание будет неотрицательным на произвольном непустом подмножестве области определения функции. И это - теорема, которую надо доказать, а не часть определения колебания функции на множестве.
Евгений Машеров в сообщении #1408623 писал(а):
И если для чего-то может быть нужно вводить колебание функции, заданной на пустом множестве, это может быть только ноль.
Нулевое колебание имеют постоянные функции. Вы предлагаете считать одинаковым колебание пустой функции и константы? Да и зачем доопределять колебание на $\varnothing$, если заперта рассматривать колебание на $\varnothing$ нету?
Евгений Машеров в сообщении #1408623 писал(а):
Но на фига это делать, спрашивает поэт Андрей Вознесенский, привычно рифмуя "на фига" и "бытия"...
alcoholist в сообщении #1408329 писал(а):
Так какую пользу вы извлекаете из того факта, что $\sup\varnothing=-\infty$? Разве что $\sup A\cup B= \max\{\sup A ,\sup B\}$

Это не самый простой вопрос. Я трактую этот вопрос шире: стоит ли говорить о "вырожденных" объектах: пустых функциях, точных гранях $\varnothing$ и т.д. Вот возьмите, например, понятие отрезка числовой прямой. Точка - это отрезок? (эквивалентный вопрос: включать ли требование $a<b$ для концов $a$ и $b$ отрезка? и почему?)

 Профиль  
                  
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 12:39 
Заслуженный участник
Аватара пользователя


22/01/11
2641
СПб
Nickname1101 в сообщении #1408621 писал(а):
Колебание функции в точке по моему определению выглядит проще

У Зорича в качестве базы взяты окрестности $U_E^{\delta}(a)$ точки из топологии области определения $E$ функции $f$, что естественно. Никакой "простоты" ваше переобозначение не дает.

-- Вс авг 04, 2019 12:41:16 --

Nickname1101 в сообщении #1408635 писал(а):
Точка - это отрезок? (эквивалентный вопрос: включать ли требование $a<b$ для концов $a$ и $b$ отрезка? и почему?)

Вопрос совершенно не принципиальный.

-- Вс авг 04, 2019 12:42:30 --

Nickname1101 в сообщении #1408635 писал(а):
И это - теорема, которую надо доказать, а не часть определения колебания функции на множестве.

в правой части модуль стоит, неотрицательно как ни трактуй определение

 Профиль  
                  
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 12:50 


17/07/19

55
alcoholist в сообщении #1408633 писал(а):
что такое "сужение канторова множества на промежуток"?
Согласен, некрасиво звучит. Я имел в виду следующее: допустим мы хотим рассмотреть колебание функции $f$, заданной на канторовом множестве на пересечении канторова множества и некоторого интервала внутри отрезка [0; 1] (например, пусть это будет интервал (0; $\frac{1}{9}$)). Т.е. мы рассматриваем $\omega(f; [K\cap (0; \frac{1}{9})])$ (где $K$ - канторово множество), тогда как с т.з. "моего" определения это же самое колебание записывалось бы в виде $\omega(f; (0; \frac{1}{9}))$. По мне, вторая запись короче и более интуитивная.

alcoholist в сообщении #1408633 писал(а):
Nickname1101 в сообщении #1408621 писал(а):
и единственен

это излишне, любой предел в хаусдорфовом пространстве единственен, если существует

Это тривиально, не не излишне. Я ровно это и сказал
Nickname1101 в сообщении #1408621 писал(а):
Доказательство единственности предела (если он существует) тривиально - пространство $\overline{\mathbb{R}}$ удовлетворяет аксиоме Хаусдорфа, поэтому доказательство практически дословно копирует стандартное.

 Профиль  
                  
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 12:53 
Заслуженный участник
Аватара пользователя


11/03/08
9904
Москва
Ну, если абсолютная величина из определения Зорича не неотрицательна...

 Профиль  
                  
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 12:58 


17/07/19

55
alcoholist в сообщении #1408639 писал(а):
Nickname1101 в сообщении #1408635 писал(а):
И это - теорема, которую надо доказать, а не часть определения колебания функции на множестве.

в правой части модуль стоит, неотрицательно как ни трактуй определение

В правой части стоит супремум множества модулей, а не модуль. Супремум может быть равен $-\infty$, если это множество пустое. С точки зрения определения колебания функции на множестве по Зоричу колебание не всегда неотрицательно.

Евгений Машеров в сообщении #1408646 писал(а):
Ну, если абсолютная величина из определения Зорича не неотрицательна...
Абсолютная величина всегда неотрицательна. См. этот комментарий и п.1 стартового.

 Профиль  
                  
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 13:16 
Заслуженный участник


09/05/13
8904
∞⠀⠀⠀⠀
Софистика это все, извините.
Nickname1101 в сообщении #1408274 писал(а):
Точные грани определены для любых подмножеств $\mathbb{R}$, поэтому запрета рассматривать $\sup \varnothing$ нету. Выберем произвольное $a\in\mathbb{R}$. Рассмотрим утверждение $(\forall x \in\varnothing) x \leqslant a$. Его отрицание $\exists x_{0}\in \varnothing: x_{0} > a$ очевидно ложно, значит само высказывание истинно, следовательно любое вещественное число является верхней гранью для $\varnothing$ в $\mathbb{R}$.

Верно. Любое вещественное число является верхней гранью. То есть множество верхних граней пустого множества равно $\mathbb R$. Супремум - это наименьшая верхняя грань. Множество верхних граней наименьшего элемента не имеет. И Вы
Цитата:
Тогда в $\overline{\mathbb{R}}$ существует $\sup \varnothing = -\infty$.

почему-то позволили себе наименьший элемент множества выбирать ему не принадлежащим.
Так действительно иногда пишут, но ничего, кроме недоразумений, как видно, эта запись не порождает.

 Профиль  
                  
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 13:34 


17/07/19

55
Otta
Вы затронули прекрасный вопрос. Я эти рассуждения проводил и у меня есть аргумент.
Когда мы говорим про супремум и инфимум мы, строго говоря, должны точно указать, о каком частично упорядоченном множестве идет речь. Вся путаница в этом и кроется: берем мы $\mathbb{R}$ или ${\overline{\mathbb{R}}}$. Для непустых ограниченных подмножеств $\mathbb{R}$ все просто: для них точные грани существуют среди вещественных чисел. А что делать с неограниченными подмножествами $\mathbb{R}$ или с $\varnothing$? Возьмите, например, $\mathbb{N}$. Есть у него точная верхняя грань? Ответ: вопрос не точный. Среди вещественных чисел нету, среди $\overline{\mathbb{R}}$ есть. И какое множество взять? В таких случаях берут $\overline{\mathbb{R}}$ и говорят, что супремум есть. Я для единообразия пошел по этому же пути. Если мы договоримся рассматривать точные грани только в $\mathbb{R}$, то у $\varnothing$ их нету. И я бы с радостью так поступил, если бы не договоренность в таких случаях брать $\overline{\mathbb{R}}$.

Если не рассматривать точные грани в $\overline{\mathbb{R}}$, то, например, теорему о пределе монотонной функции нельзя будет сформулировать для функции с неограниченной областью определения и перенести на предел монотонной последовательности.

 Профиль  
                  
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 14:50 
Заслуженный участник


09/05/13
8904
∞⠀⠀⠀⠀
Nickname1101 в сообщении #1408652 писал(а):
Если не рассматривать точные грани в $\overline{\mathbb{R}}$, то, например, теорему о пределе монотонной функции нельзя будет сформулировать для функции с неограниченной областью определения и перенести на предел монотонной последовательности.

Конкретно, что мешает? Там нет необходимости упоминать в явном виде т.в.г., в тех случаях, когда она не существует.

 Профиль  
                  
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 16:01 


17/07/19

55
Otta в сообщении #1408660 писал(а):
Конкретно, что мешает? Там нет необходимости упоминать в явном виде т.в.г., в тех случаях, когда она не существует.

Вот рассматриваем мы какую-нибудь монотонную (пусть неубывающую) функцию $f: \mathbb{R}\supset X\to \mathbb{R}$. Мы можем рассмотреть ее предел только в точке, предельной для ее области определения $X$. Таких точек может быть сколько угодно. Теорема о пределе монотонной (неубывающей) функции утверждает существование предела в конкретной точке $a = \sup X$. Если $X$ - бесконечное неограниченное сверху подмножество $\mathbb{R}$ (натуральный ряд, например) то, как мы договорились, супремума у него нету. Как для таких функций формулировать эту теорему? В какой точке рассматривать предел? Отдельно обговаривать что-то наподобие "если область определения функции не ограничена сверху, то теорема справедлива, если рассматривать предел функции $f$ в точке $+\infty$..."? Я не понимаю, что Вы имеете в виду, когда пишите "... в тех случаях, когда она не существует"? Т.в.г области определения монотонной (неубывающей) функции $f$ не существует в смысле нашей договоренности? Потому что в $\overline{\mathbb{R}}$ она всегда существует. Зорич, прежде чем формулировать теорему, явно написал, в какой точке мы рассматриваем предел:
Зорич писал(а):
Предположим, что числа (или символы $-\infty$, $+\infty$) $i=\inf E$ и $s=\sup E$ являются предельными точками множества $E$ и $f:E\to\mathbb{R}$ - монотонная функция на $E$.Теорема 6 (критерий существования предела монотонной функции). Для того чтобы неубывающая на множестве $E$ функция $f:E\to\mathbb{R}$ имела предел при $x\to s$, $x\in E$, необходимо и достаточно...

В какой точке (из всех верхних границ множества $X = Dom(f)$) вообще можно рассматривать предел этой функции? Только в супремуме, т.к. все остальные верхние границы (если они есть) не являются даже точками прикосновения для $X$, не говоря уж о том, чтобы быть предельными точками. А супремум всегда является хотя бы точкой прикосновения для $X$ и если повезет, то может оказаться и предельной точкой для $X$.

 Профиль  
                  
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 16:30 
Заслуженный участник


09/05/13
8904
∞⠀⠀⠀⠀
Nickname1101 в сообщении #1408672 писал(а):
Теорема о пределе монотонной (неубывающей) функции утверждает существование предела в конкретной точке $a = \sup X$

Это лишнее. По существу утверждается, что
Если числа (или символы $-\infty$, $+\infty$) $i$ и $s$ являются предельными точками множества $E$ и $f:E\to\mathbb{R}$ - монотонная функция на $E$, то для того чтобы неубывающая на множестве $E$ функция $f:E\to\mathbb{R}$ имела предел при $x\to s-0$, $x\in E$, необходимо и достаточно...
Аналогично про предел при $x\to i+0$, $x\in E$.

Задействовать супремум можно - если очень хочется, но когда он есть.
Супремума неограниченного сверху непустого множества в $\mathbb R$ - да, не существует, согласно тому же Зоричу.
Супремум неограниченного сверху непустого множества в $\overline{\mathbb{R}}$ равен плюс бесконечности.
Но если вдруг написано $\sup X=+\infty$ - это не несет в себе никакой информации, кроме той, что множество неограничено сверху. Извлечь дополнительную радость отсюда невозможно.

 Профиль  
                  
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 16:50 


17/07/19

55
Мы об одном и том же. Я предлагаю вернуться ближе к теме.
Как Вы считаете, почему в определении верхних границ фигурирует произвольное подмножество вещественных чисел? Почему бы не ввести запрет на рассмотрение $\varnothing$? С интуицией это будет согласовываться лучше. Колебания функции всегда станут неотрицательными. Даже с т.з. моего определения получится, что колебаний функции просто нету на множестве, где она не определена. Все прекрасно. Но зачем-то ведь $\varnothing$ считают допустимым при определении границ. У меня есть пара мыслей на этот счет, но я к сожалению не владею достаточной матчастью.

 Профиль  
                  
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 18:23 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
Интересно, как эти две стр. пустопорожних рассуждений о пустых множествах соотносятся с содержательной математикой?

 Профиль  
                  
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 19:04 


17/07/19

55
Brukvalub в сообщении #1408710 писал(а):
...о пустых множествах...

Пустое множество одно единственное :-)

 Профиль  
                  
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 19:48 
Аватара пользователя


31/08/17
2116
Nickname1101 в сообщении #1408274 писал(а):
У меня есть еще вопросы,
Не сомневаюсь. И наверняка такие же глупые, как те, что уже заданы. Ну а если я вам скажу, что функции с областью определения $\varnothing$ нафиг ни кому не нужны, в анализе уж по крайней мере. Полегчало? Способности к математике проявляются, в частности, в том, какие вопросы студент задает.

 Профиль  
                  
 
 Re: Определение колебания функции на множестве и в точке
Сообщение04.08.2019, 20:04 


17/07/19

55
pogulyat_vyshel в сообщении #1408736 писал(а):
И наверняка такие же глупые, как те, что уже заданы.
Обоснуйте.
pogulyat_vyshel в сообщении #1408736 писал(а):
Полегчало?
Нет.
pogulyat_vyshel в сообщении #1408736 писал(а):
Ну а если я вам скажу, что функции с областью определения $\varnothing$ нафиг ни кому не нужны, в анализе уж по крайней мере.
Я конечно понимаю, что "нафиг ни кому не нужны" это очень содержательный аргумент, но мне он почему-то не кажется убедительным. Пустое множество тоже "нафиг ни кому не нужно"?
pogulyat_vyshel в сообщении #1408736 писал(а):
Способности к математике проявляются, в частности, в том, какие вопросы студент задает.
Я не студент.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 36 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihaild


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group