2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу Пред.  1 ... 24, 25, 26, 27, 28  След.
 
 Re: ВТФ и дискретная геометрия
Сообщение28.06.2019, 18:41 
Аватара пользователя


25/02/07

887
Симферополь
Мне на это указали и я поправился. И в последнем посте явно привел условие: НОД > 1.
НОД в указанном мной виде всегда существует и всегда > 1. И это не просто так. Почему - я объяснял. Но кто же вникает в объяснения?

 Профиль  
                  
 
 Re: ВТФ и дискретная геометрия
Сообщение28.06.2019, 18:45 
Заслуженный участник
Аватара пользователя


23/07/05
17973
Москва

(serval)

serval в сообщении #1402063 писал(а):
Почему - я объяснял. Но кто же вникает в объяснения?
Нет в мире справедливости…

 Профиль  
                  
 
 Re: ВТФ и дискретная геометрия
Сообщение28.06.2019, 18:47 
Аватара пользователя


25/02/07

887
Симферополь

(Оффтоп)

Справедливость нужна на суде, а здесь мы развлекаемся.

 Профиль  
                  
 
 Re: ВТФ и дискретная геометрия
Сообщение28.06.2019, 19:03 
Заслуженный участник
Аватара пользователя


23/07/05
17973
Москва

(serval)

serval в сообщении #1402068 писал(а):
Справедливость нужна на суде
Вообще-то, считается, что в суде должен быть закон, а не справедливость.
Ладно, давайте не будем развивать эту тему. Просто меня раздражают неточные формулировки. Хотя я догадался, что Вас интересуют случаи, когда общий делитель больше $1$, но ваша формулировка была неточной. Считайте меня занудой.

 Профиль  
                  
 
 Re: ВТФ и дискретная геометрия
Сообщение28.06.2019, 19:40 
Аватара пользователя


25/02/07

887
Симферополь

(Оффтоп)

Я ни разу не посетовал на такое "занудство". Напротив, всегда благодарил за подобные указания. Они не раз помогали мне строго определить то, что кажется очевидным в силу привычности.

 Профиль  
                  
 
 Re: ВТФ и дискретная геометрия
Сообщение29.06.2019, 14:12 
Аватара пользователя


25/02/07

887
Симферополь
Условия существования примитивных пифагоровых и кубических троек.

Пусть

$t=\text{НОД}(c-a,b)\ ;\ c-a=rt\ ;\ b=lt$

$t>1\ ;\ a<b<c\ ;\ r<l\ ;\ a,b,c,r,l,t \in N$

Тогда условие существования примитивной пифагоровой тройки $a^2+b^2=c^2$ таково:

$l(a+b-c)=r(a+c-b)$

а условие существования примитивной кубической тройки $a^3+b^3=c^3$ таково:

$lb^2=r(a^2+ac+c^2)$

Интересно, что основания элементов кубической тройки сгруппировались относительно величин через которые они представлены:

$b=f(l)\ ;\ c-a=f(r)\ .$

 Профиль  
                  
 
 Re: ВТФ и дискретная геометрия
Сообщение03.07.2019, 11:43 


19/04/14
321
serval в сообщении #1402178 писал(а):
а условие существования примитивной кубической тройки $a^3+b^3=c^3$ таково:

$lb^2=r(a^2+ac+c^2)$

Уважаемый serval!
Вами в известное равенство $b^3=(c-a)(a^2+ac+c^2)$ введено сокращаемое $t$ $$\ \displaystyle \frac{b}{t}b^2=\ \displaystyle \frac{c-a}{t}(a^2+ac+c^2)$$ Все равно как сокращаемое свойство. Какие же новые свойства в результате мы получаем?

 Профиль  
                  
 
 Re: ВТФ и дискретная геометрия
Сообщение03.07.2019, 22:37 
Аватара пользователя


25/02/07

887
Симферополь
Уважаемый(ая?) binki!

$t$ - не любое натуральное число, а $\text{НОД}(c-a,b)\ .$

Чуть позже я покажу условия существования примитивных степенных троек в матричном виде.

 Профиль  
                  
 
 Re: ВТФ и дискретная геометрия
Сообщение04.07.2019, 08:40 


19/04/14
321
serval в сообщении #1403054 писал(а):
$t$ - не любое натуральное число, а $\text{НОД}(c-a,b)\ .$

Чуть позже я покажу условия существования примитивных степенных троек в матричном виде.

Надо разобраться в элементарном. Известно, что $b$ составное из взаимно простых чисел $b=b_1b_2$. Следовательно, $\text{НОД}(c-a,b)\ =b_1$. Так как $b_1|(c-a)$ в любом случае ($3 | b_1$ или $3\not|\quad b_1$ ) . Какие новые свойства появляются после сокращения на $b_1$ ? Кроме того, что куб $b_1^3$ стал квадратом.

 Профиль  
                  
 
 Re: ВТФ и дискретная геометрия
Сообщение10.07.2019, 11:00 
Аватара пользователя


25/02/07

887
Симферополь
Уважаемый binki!

Это сокращение не добавляет новых свойств. Оно лишь явным образом:
1. указывает на то, что оставшиеся после сокращения на $t$ числа $l$ и $r$ являются взаимно простыми,
2. позволяет увидеть структуру сомножителя при $r$.

Матричная структура степенных троек для различных степеней $n$ такова:

$n=1:\ l = r
\begin{vmatrix}
(c+a)^0 & 0\\
0 & 1\\
\end{vmatrix}
$

$n=2:\ lb = r
\begin{vmatrix}
(c+a)^1 & 0\\
0 & 1\\
\end{vmatrix}$

$n=3:\ lb^2 = r
\begin{vmatrix}
(c+a)^2 & ca\\
1 & 1\\
\end{vmatrix}$

$n=4:\ lb^3 = r
\begin{vmatrix}
(c+a)^3 & ca\\
2c+2a & 1\\
\end{vmatrix}$

$n=5:\ lb^4 = r
\begin{vmatrix}
(c+a)^4 & ca\\
3c^2+5ca+3a^2 & 1\\
\end{vmatrix}$

$n=6:\ lb^5 = r
\begin{vmatrix}
(c+a)^5 & ca\\
4c^3+9c^2a+9ca^2+4a^3 & 1\\
\end{vmatrix}$

и так далее.

Видно, что левый нижний элемент матрицы это часть соответствующей степени суммы $(c+a)^n$.

Обращает на себя внимание сходство (и принципиальное их отличие от последующих) матриц первых двух степеней - как раз тех, равенства для которых выполняются в натуральных числах.

 Профиль  
                  
 
 Re: ВТФ и дискретная геометрия
Сообщение10.07.2019, 16:33 


19/04/14
321
Уважаемый serval!
Матричная запись более наглядна для некоторых соотношений по отношению с обычной алгебраической. Но зачем введены дополнительные r,l. Лишние два числа, а новых свойств не видно. Чем хуже такая запись?$$n=3;\quad\ b^3 =(c-a)
\begin{vmatrix}
(c+a)^2 & ca\\
1 & 1\\
\end{vmatrix}$$ Или такая $$n=3;\quad b^3=b_1^3b_2^3;\quad\ b_2^3 =
\begin{vmatrix}
(c+a)^2 & ca\\
1 & 1\\
\end{vmatrix}$$ .

 Профиль  
                  
 
 Re: ВТФ и дискретная геометрия
Сообщение10.07.2019, 16:57 
Аватара пользователя


25/02/07

887
Симферополь
Уважаемый binki!

Первая из приведенных вами записей ничем не хуже, но если существует дополнительное условие на соотношение $a,b\ \text{и}\ c$ , то почему его не использовать и не сократить на $t$ сразу?

Вторая же запись неверна.

 Профиль  
                  
 
 Re: ВТФ и дискретная геометрия
Сообщение10.07.2019, 20:13 


19/04/14
321
serval в сообщении #1404371 писал(а):
Вторая же запись неверна.

Запись для случая когда $ 3\not|\; b;\quad b_1^3=c-a$

 Профиль  
                  
 
 Re: ВТФ и дискретная геометрия
Сообщение13.07.2019, 10:37 
Аватара пользователя


25/02/07

887
Симферополь
Сейчас меня интересует связь между выполнением равенства в натуральных числах для первой и второй степеней и одинаковой структурой их матриц.

 Профиль  
                  
 
 Re: ВТФ и дискретная геометрия
Сообщение26.08.2019, 22:39 
Аватара пользователя


25/02/07

887
Симферополь
Переформулирование задачи.

Кажется очевидным, что при доказательстве ВТФ задача состоит в изучении свойств операции сложения на множестве чисел $\{x^n\}$ : $a^n+b^n=c^n$ . Однако, её можно поставить иначе.

Пусть имеются матрицы

$\begin{equation*}
x =
\begin{pmatrix}
1 & 0 & 0\\
x & 1 & 0\\
\displaystyle \frac{1}{2}\ x\ (x-1) & x & 1
\end{pmatrix}
\end{equation*}$
и
$\begin{equation*}
P_2 =
\begin{pmatrix}
0 & 1 & 2\\
0 & 2 & 0\\
0 & 0 & 0
\end{pmatrix}
\end{equation*}$

и векторы

$e_1=(1,0,0 \ldots)$

и
$\begin{equation*}
e^1 =
\begin{pmatrix}
1 \\
0 \\
0 \\
\vdots
\end{pmatrix}
\end{equation*}$

Тогда число вида $b^2$ может быть представлено как результат скалярного произведения

$b^2=e_1 \ P_2 \ b \ e^1$

а число вида $c^2-a^2$ как результат скалярного произведения

$c^2 - a^2=e_1 \ a^T \ P_2 \ a^{-1} \ c \ e^1$

Таким образом, условие существования пифагоровых троек равносильно равенству скалярных произведений

$e_1 \ P_2 \ b \ e^1=e_1 \ a^T \ P_2 \ a^{-1} \ c \ e^1$

( вообще, степенных троек, удовлетворяющих условию ВТФ: $e_1 \ P_n \ b \ e^1=e_1 \ a^T \ P_n \ a^{-1} \ c \ e^1$ )

То есть, задача сводится к изучению свойств скалярного произведения векторов специального вида.

Имеют ли матричные скобки $a^T,a^{-1}$ какой-нибудь стандартный смысл?
Как правильно записать эти скалярные произведения в тензорном виде?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 413 ]  На страницу Пред.  1 ... 24, 25, 26, 27, 28  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: ivanovbp


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group