2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Загадки о математических понятиях
Сообщение01.02.2019, 19:41 
Заслуженный участник


27/04/09
28128
Cash в сообщении #1373401 писал(а):
Неееее.
Вот добро дали, тогда можно и попробовать! :-)

2. Эллиптическими их никогда не зовут. В принципе они бывают и параболическими, но это вообще скучно чтоб так звать.

Это загадка не об одном понятии, но в принципе ответом может быть охватывающая всё фраза из двух слов. Это загадка так же больше в духе «Реального конкурса», а не ребуса, ребусная на ум не пришла пока. Можете сразу загадывать следующую, и через пару страниц или дней я напишу в спойлере ответ на эту с пояснением.

 Профиль  
                  
 
 Re: Загадки о математических понятиях
Сообщение01.02.2019, 19:56 


05/09/16
12128
arseniiv
А это эллиптическое по сути но не обиходному названию из математики вообще? Ну типа «эллиптическое зеркало» скорее из физики.

 Профиль  
                  
 
 Re: Загадки о математических понятиях
Сообщение01.02.2019, 19:59 
Заслуженный участник


27/04/09
28128
Зуб даю на отсечение, из математики. Как небольшая подсказка, кстати, вы точно знаете эти штуки.

 Профиль  
                  
 
 Re: Загадки о математических понятиях
Сообщение04.02.2019, 13:53 


05/09/16
12128
Ну у меня пара догадок.

1. Это дифференциальные уравнения. Эллиптические, Параболические.
2. Это проективные преобразования. Тут что такое "эллиптические" которые так не называют и скушные параболические, не знаю :mrgreen:

 Профиль  
                  
 
 Re: Загадки о математических понятиях
Сообщение04.02.2019, 20:19 
Заслуженный участник
Аватара пользователя


28/07/09
1238
arseniiv
Синус и косинус?

 Профиль  
                  
 
 Re: Загадки о математических понятиях
Сообщение08.02.2019, 02:40 
Заслуженный участник


27/04/09
28128
wrest в сообщении #1374053 писал(а):
1. Это дифференциальные уравнения.
Да, я предполагал, что такое придёт в голову, но это не они: вроде бы все три типа весьма важны и в приложениях, и для теории интересны, ну и названия у них у всех явные.

wrest в сообщении #1374053 писал(а):
2. Это проективные преобразования. Тут что такое "эллиптические" которые так не называют и скушные параболические, не знаю :mrgreen:
М, не подумал, а между тем это может подходить. Давно о них не читал и всё пока что забыл, потому не скажу, можно ли это считать альтернативным ответом. Но названия явные тоже.

Legioner93 в сообщении #1374157 писал(а):
Синус и косинус?
Ага. А теперь поясню про параболические: это $1$ («косинус») и $x$ («синус»), их можно получить беря экспоненту от нильпотентного аргумента ровно так же как можно получать «эллиптические», беря экспоненту от аргумента с отрицательным квадратом, и гиперболические, беря экспоненту от аргумента с положительным квадратом.

Несколько дней подряд забывал написать в эту тему, еле вспомнил, простите.

 Профиль  
                  
 
 Re: Загадки о математических понятиях
Сообщение08.02.2019, 05:19 
Заслуженный участник


13/12/05
4621
arseniiv в сообщении #1373427 писал(а):
Эллиптическими их никогда не зовут

А вот эти Эллиптические функции Якоби

 Профиль  
                  
 
 Re: Загадки о математических понятиях
Сообщение08.02.2019, 06:20 
Заслуженный участник


27/04/09
28128
Мне показалось, функции $\mathrm{cd},\mathrm{sd}$ одинаково обобщают и тригонометрические, и гиперболические (смотря каков параметр $m$). Но с точностью не всматривался. :-)

 Профиль  
                  
 
 Re: Загадки о математических понятиях
Сообщение08.02.2019, 11:24 


05/09/16
12128
arseniiv в сообщении #1374821 писал(а):
А теперь поясню про параболические: это $1$ («косинус») и $x$ («синус»), их можно получить беря экспоненту от нильпотентного аргумента ровно так же как можно получать «эллиптические», беря экспоненту от аргумента с отрицательным квадратом, и гиперболические, беря экспоненту от аргумента с положительным квадратом.

Э... а можно формулы?

Собсно, что мы знаем о синусах и косинусах. Что одни - нечетные производные других и следовательно четные производные это сами функции - дифференциальные свойства.

Синус или косинус суммы (разности) аргументов это сумма (или разность) произведений синусов-косинусов аргументов, а сумма (или разность) квадратов синуса и косинуса равна единице - функциональные свойства.

Вот все пары функций которые имеют эти свойства (или дифференциальные или функциональные или и те и другие), мы можем назвать синусом и косинусом, я верно понимаю?

 Профиль  
                  
 
 Re: Загадки о математических понятиях
Сообщение09.02.2019, 15:30 
Заслуженный участник
Аватара пользователя


28/07/09
1238
arseniiv в сообщении #1374821 писал(а):
Ага. А теперь поясню про параболические: это $1$ («косинус») и $x$ («синус»), их можно получить беря экспоненту от нильпотентного аргумента ровно так же как можно получать «эллиптические», беря экспоненту от аргумента с отрицательным квадратом, и гиперболические, беря экспоненту от аргумента с положительным квадратом.


Ваше определение параболических я не особо понял. Это что-то из нестандартного анализа, где $\sin{\varepsilon} = \varepsilon$, потому что $\varepsilon^2 = 0$?

Я до эллиптических/гиперболических/параболических синусов и косинусов дошёл так:

$$y'' =(-1) \cdot y \Rightarrow y = A\cos x + B\sin x$$
$$y'' =(+1) \cdot y \Rightarrow y = A\ch x + B\sh x$$
$$y'' =0 \cdot y \Rightarrow y = A + Bx$$

 Профиль  
                  
 
 Re: Загадки о математических понятиях
Сообщение15.02.2019, 03:37 
Заслуженный участник


27/04/09
28128
Legioner93
Можно и так дойти, всё в конечном счёте едино. :-) Мы ещё можем взять квадратичную форму сигнатуры $(1,0,1)$ на плоскости и посмотреть на соответствующую группу $\mathrm{SO}$, она будет однопараметрической как и группы $\mathrm{SO}(1+1,0,0,\mathbb R)$ и $\mathrm{SO}(1,1,0,\mathbb R)$, и правильно выбранный гомоморфизм из $(\mathbb R,+)$ в неё даст «параболические тригонометрические функции» ровно так же, как аналогичный гомоморфизм в две другие даст эллип просто тригонометрические и гиперболические.

Я почти не разбираюсь в алгебрах ли, но связь всего этого с экспонентой по идее получается через них, так что эти все способы действительно одно и то же в разных проекциях.

Legioner93 в сообщении #1374971 писал(а):
Это что-то из нестандартного анализа, где $\sin{\varepsilon} = \varepsilon$, потому что $\varepsilon^2 = 0$?
Да, всё как вы написали, но нестандартный анализ в строгом смысле тут ни при чём (там бесконечно малые элементы не дают в квадрате ноль). Если добавить к вещественным числам только одну такую «мнимую единицу» $\varepsilon$, получатся «дуальные числа», наименьшая подходящая вещественная алгебра, но конечно всегда можно взять и алгебру побольше типа, например, внешней алгебры любого более чем одномерного ($\mathbb R$-)векторного пространства (а внешняя алгебра одномерного будет изоморфна алгебре дуальных чисел).

* Это как минимум, а вообще любая нормированная ассоциативная $\mathbb R$-алгебра сгодится; нормированность нужна, чтобы о сходимости рядов говорить.

-- Пт фев 15, 2019 05:53:53 --

wrest в сообщении #1374852 писал(а):
Э... а можно формулы?
Определим экспоненту $\exp x$ произвольного элемента какого-то достаточно подходящего кольца (вон я выше брал нормированные ассоциативные $\mathbb R$-алгебры, но вообще забыл, нужна ли ассоциативность и вещественность) обычным рядом $\sum_{n=0}^\infty x^n/n!$ [UPD: точнее, не для произвольного определим, конечно, а только для тех, для которых ряд не сходится], тогда если $x^2 = 0$, получим $\exp x = 1 + x$ аналогично тому как если $x^2 < 0$, мы получим $\exp x = \cos\lVert x\rVert x+\operatorname{sgn}x\sin\lVert x\rVert$ и если $x^2 > 0$, мы получим $\exp x = \ch\lVert x\rVert x+\operatorname{sgn}x\sh\lVert x\rVert$, где $\operatorname{sgn}x = x/\lVert x\rVert$ для $x\ne0$ и $\operatorname{sgn}0 = 0$. Значит, для условных $\mathrm{cp, sp}$ будет $\operatorname{cp}\lVert x\rVert x = 1$ и $\operatorname{sgn}x\operatorname{sp}\lVert x\rVert x = x$, откуда немного помахав руками можно получить $\operatorname{cp}x = 1$, $\operatorname{sp}x = x$ (кажется, лучше идти всё-таки через гомоморфизм: оно и с традиционным определением через угол поворота ближе, и будет аккуратнее).

wrest в сообщении #1374852 писал(а):
Вот все пары функций которые имеют эти свойства (или дифференциальные или функциональные или и те и другие), мы можем назвать синусом и косинусом, я верно понимаю?
За всё математическое сообщество говорить не стану. :-) Я лично связываю их с $\mathrm{SO}$ всевозможных плоскостей (всевозможных в смысле сигнатуры квадратичной формы, ведь больше разницы никакой не будет; и ещё тождественно нулевую надо будет исключить).

 Профиль  
                  
 
 Re: Загадки о математических понятиях
Сообщение15.02.2019, 10:32 
Заслуженный участник
Аватара пользователя


30/01/06
72407
arseniiv в сообщении #1376089 писал(а):
Мы ещё можем взять квадратичную форму сигнатуры $(1,0,1)$ на плоскости

Ой, а можно привести матрицу такой квадратичной формы? А то у меня почему-то $3\ne 2.$

 Профиль  
                  
 
 Re: Загадки о математических понятиях
Сообщение15.02.2019, 12:38 
Заслуженный участник


27/04/09
28128
Последнее число показывает число нулей на диагонали, когда матрица формы диагональна, так что в таком случае она будет $\operatorname{diag}(1, 0)$. Как для известных уже нам евклидова случая $\operatorname{diag}(1, 1)$ и псевдоевклидова случая $\operatorname{diag}(1, -1)$. Линии уровня такой формы — пары параллельных прямых, параллельных мнимой оси плоскости; немножко жалко, что не параболы, а вырожденные конические сечения, но тут ничего не сделаешь. Аналогично поведению окружностей и ветвей правильных гипербол, преобразование из $\mathrm{SO}(1,0,1,\mathbb R)$ будет смещать точки одной из прямых пары вверх, а другой вниз (и, конечно, не просто смещать, а даже параллельно переносить, раз оно должно быть линейным и при этом сохранять не линейное, а аффинное подпространство, ведь раз само это подпространство одномерно, в нём можно только параллельно переносить и отражать, но отражения мы запретили).

-- Пт фев 15, 2019 14:40:41 --

То есть я конечно могу понять ваше смущение, обычно рассматривают невырожденные формы и сигнатура есть пара чисел, а не тройка, но тут никуда не деться, а если обозначать только пару чисел, нельзя читателю три раза напомнить, какой размерности рассматриваемое пространство. :D

 Профиль  
                  
 
 Re: Загадки о математических понятиях
Сообщение15.02.2019, 14:02 
Заслуженный участник
Аватара пользователя


30/01/06
72407
arseniiv в сообщении #1376165 писал(а):
Последнее число показывает число нулей на диагонали, когда матрица формы диагональна

Где вы видели такое обозначение? Ссылку, пожалуйста.

 Профиль  
                  
 
 Re: Загадки о математических понятиях
Сообщение16.02.2019, 00:52 
Заслуженный участник


27/04/09
28128
Возможно, нигде, но для алгебр Клиффорда где-то видел перечисление трёх чисел, вот и перенёс. Во всяком случае оно не может быть понято как какое-то существующее обозначение чего-то другого.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 30 ]  На страницу Пред.  1, 2

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group