2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Факториал нуля
Сообщение17.12.2018, 14:33 


22/06/09
975

(Оффтоп)

Dragon27 в сообщении #1361847 писал(а):
какой-то элемент из области определения, а область определения пуста

Dragon27 в сообщении #1361847 писал(а):
наличие элементов в области определения

Область значений, конечно. В русском языке, почему-то, часто путаю ):

 Профиль  
                  
 
 Re: Факториал нуля
Сообщение17.12.2018, 14:36 
Аватара пользователя


13/08/13

4323
Dragon27 в сообщении #1361868 писал(а):
Так вы продемонстрируйте. Не понимаю, что это за "-2-сумма". Как можно взять отрицательное количество элементов?
Не, можно, конечно, в каких-то задачах определить подобные вещи, чтобы при выходе за... "допустимые значения переменной" использовать.

Да, сумма до нуля прекрасно определяется если даже считать с единичного элемента :-) А вот чтобы определить сумму до -1, нужен нулевой элемент. Вообще сумму $\sum\limits_{i=m}^n a_i$ можно определить как значение в натуральных точках некоторого интеграла, который представляет собой аналитическое продолжение этой суммы на "дробные" значения $\int_{m-1}^{n} A(x)dx$, тогда если взять $m=1, n=0$, то получим ноль, т.к. интеграл от функции $A(x)$ от нуля до нуля равен нулю :)
Dragon27 в сообщении #1361868 писал(а):
стати, количество функций из множества с количеством элементов $n$ во множество с количеством элементов $m$ равно $m^n$. Если $0^0$ определить равным единице, то формула будет работать и для множеств с нулевыми количествами элементов :)

Собственно это то, о чем я и говорил, для меня было чистым совпадением, или просто игрой слов, чтобы правдоподобно обобщить на нулевой случай.
warlock66613 в сообщении #1361875 писал(а):
Можно. Берёте Haskell, там есть тип Void, имеющим множеством значений пустое множество, и одна-единственная функция absurd из Void в любой другой тип, в том числе и в Void. Всё очень осязаемо.

А эту осязаемость туда забили ручками определенная категория математиков, ога :mrgreen:
eugensk в сообщении #1361911 писал(а):
редположу, что Вам $C_n^0$ тоже не совсем нравится, а $C_n^n$ - нормально.

Нет, оба одинаково нравятся. Но вот факториал нуля при вычислении первого не нравится. Такие дела :roll:

 Профиль  
                  
 
 Re: Факториал нуля
Сообщение17.12.2018, 14:53 
Заслуженный участник


09/05/12
25179
 ! 
Sicker в сообщении #1361853 писал(а):
P.S. Решил найти давнюю тему "Страх перед нулем и единицей" 2014 года topic80260-15.html , и я там на второй странице уже высказал свое мнение :mrgreen:
По-видимому, это следует считать высказыванием того же мнения еще раз, стало быть, повторением нарушения. Sicker, бан на месяц за повторное хамство.

 Профиль  
                  
 
 Re: Факториал нуля
Сообщение17.12.2018, 15:02 


05/09/16
12058

(Оффтоп)

А я-то думал, когда же тут до разборок с $0^0=1$ дело дойдет. Ну теперь, видимо, не раньше чем через месяц

 Профиль  
                  
 
 Re: Факториал нуля
Сообщение17.12.2018, 15:10 
Аватара пользователя


01/11/14
1903
Principality of Galilee
А о чём вообще идёт разговор? Пустое множество можно упорядочить единственным образом. Ну и о чём спорить?

 Профиль  
                  
 
 Re: Факториал нуля
Сообщение17.12.2018, 15:19 
Заслуженный участник
Аватара пользователя


16/07/14
9149
Цюрих
Sicker в сообщении #1361843 писал(а):
Может это просто совпадение с факториалом?
Приведите ваше определение факториала тогда. Есть несколько стандартных: $n! = \Gamma(n + 1)$ при $n \geqslant 0$; $n!$ - число биекций из $n$-элементного множества в себя; $0! = 1$, $(n+1)! = (n + 1) \cdot n!$; может есть еще что-то. Эквивалентность их всех доказывается.

 Профиль  
                  
 
 Re: Факториал нуля
Сообщение17.12.2018, 17:42 
Заслуженный участник


02/08/11
7003
Sicker в сообщении #1361923 писал(а):
А эту осязаемость туда забили ручками определенная категория математиков, ога
Математические законы в известном контексте так же непреодолимы, как и законы природы. Если бы количество отображений пустого множества на себя (а равно и на другие множества) было равно не единице, а нулю, функции absurd не могло бы быть. А она есть.

 Профиль  
                  
 
 Re: Факториал нуля
Сообщение17.12.2018, 19:38 


22/06/09
975
Sicker в сообщении #1361923 писал(а):
Да, сумма до нуля прекрасно определяется если даже считать с единичного элемента :-) А вот чтобы определить сумму до -1, нужен нулевой элемент.

Вы её так и не определили.
Мне лично кажется логичным для элементов с отрицательным индексом брать обратное значение ($-x$ для суммы, $1/x$ для произведения). Так что произведение пяти двоек будет $2^5$, а произведение минус пяти двоек будет $2^{-5}$.

 Профиль  
                  
 
 Re: Факториал нуля
Сообщение17.12.2018, 23:42 
Заслуженный участник
Аватара пользователя


28/04/16
2395
Снаружи ускорителя

(Оффтоп)

Dragon27 в сообщении #1361991 писал(а):
Мне лично кажется логичным для элементов с отрицательным индексом брать обратное значение ($-x$ для суммы, $1/x$ для произведения).

Напоминаю на всякий пожарный, раз аппелируют к разным языкам программирования, что в некоторых из них, в том же Python, Matlab и т.д., суммы с отрицательными индексами вполне существуют (для массивоподобных структур, в Python -- это списки, или всякие array из NumPy). Отрицательным индексам соответствуют те же значения массива A, состоящего из N элементов (A[0], A[1], ... , A[N-1]), только начиная с последнего, т.е. A[-1]=A[N-1]; A[-2]=A[N-2] и т.д.

 Профиль  
                  
 
 Re: Факториал нуля
Сообщение18.12.2018, 00:53 
Заслуженный участник


02/08/11
7003
madschumacher, кажется пошла какая-то путаница с термином "индекс".

 Профиль  
                  
 
 Re: Факториал нуля
Сообщение18.12.2018, 09:17 


28/07/17

317
Sicker в сообщении #1361690 писал(а):
факториал $n$ это множество перестановок из $n$ элементов, если $n=0$, то количество перестановок равно одному, т.к. переставлять нечего.

Если количество элементов равно нулю, то и количество перестановок равно нулю, т.к. переставлять нечего. Это обычная, бытовая, житейская, не научная логика.

 Профиль  
                  
 
 Re: Факториал нуля
Сообщение18.12.2018, 09:37 
Аватара пользователя


14/12/17
1516
деревня Инет-Кельмында
FomaNeverov

Если я начинаю с фразы "если количество элементов" и дохожу до слов "бытовая, житейская", то всегда перехожу в состояние оторопи, и остаюсь там. Не знаю, как это можно использовать.

 Профиль  
                  
 
 Re: Факториал нуля
Сообщение18.12.2018, 09:45 


22/06/09
975
FomaNeverov в сообщении #1362109 писал(а):
Если количество элементов равно нулю, то и количество перестановок равно нулю, т.к. переставлять нечего. Это обычная, бытовая, житейская, не научная логика.

Так можно и про один элемент сказать. Переставлять нечего, элемент и так на своём месте, какие ещё перестановки?
Лучше, наверное, сказать, одна перестановка - это "оставить всё как есть". Она, как бы, по умолчанию. Это что имелось в виду под тождественной функцией в начале. У любого объекта в категории есть тождественная функция. Просто для пустого множества она совпадает с пустой функцией.

 Профиль  
                  
 
 Re: Факториал нуля
Сообщение18.12.2018, 19:55 


28/07/17

317
Dragon27 в сообщении #1362113 писал(а):
Так можно и про один элемент сказать. Переставлять нечего, элемент и так на своём месте, какие ещё перестановки?

Может я неправильно выразился (а вы и рады накинуться...). Один элемент имеет одну возможную расстановку. Ноль элементов не имеют ни одной возможной расстановки, потому что нет ничего: ни элементов, ни возможностей. Пусто.

 Профиль  
                  
 
 Re: Факториал нуля
Сообщение18.12.2018, 23:34 


22/06/09
975
FomaNeverov в сообщении #1362267 писал(а):
Может я неправильно выразился (а вы и рады накинуться...). Один элемент имеет одну возможную расстановку. Ноль элементов не имеют ни одной возможной расстановки, потому что нет ничего: ни элементов, ни возможностей. Пусто.

Ну вот одна расстановка "ничего не расставлено" и есть. Как и для одного элемента "стоит на единственном месте".
Также любопытно, что эта (пустая) расстановка может считаться беспорядком (ссылка на русскую вики почему-то не хочет обрабатываться нормально: https://ru.wikipedia.org/wiki/Беспорядок_(перестановка) ), так как ни один элемент не находится на своём месте (ибо мы не можем указать ни одного элемента, который бы находился на своём месте - элементов-то нет).

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 66 ]  На страницу Пред.  1, 2, 3, 4, 5  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group