2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Соотношение с логарифмом
Сообщение10.12.2018, 22:23 


23/08/10
205
 i  Modest: отделено от «Малоизвестные (или не очень) красивые соотношения».

По мне красивое соотношение, на счет известности не знаю, во время моей учебы такое соотношение не встречалось.
${x}^{\frac 1 \ln_x }=e$

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение11.12.2018, 02:52 
Заслуженный участник


02/08/11
7013
ATI.HeNRy в сообщении #1360326 писал(а):
во время моей учебы такое соотношение не встречалось
А $11111 + 88888 = 99999$ встречалось? Тоже ведь красивое соотношение...

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение11.12.2018, 11:46 


23/08/10
205
warlock66613 в сообщении #1360361 писал(а):
ATI.HeNRy в сообщении #1360326 писал(а):
во время моей учебы такое соотношение не встречалось
А $11111 + 88888 = 99999$ встречалось? Тоже ведь красивое соотношение...
тем не менее не правильное , правильный ответ A99999 :)
И что Вы как цербер, кинулись на форумчанина(меня), я то уже привык к таком поведению здесь, а как же другие?

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение11.12.2018, 13:39 


21/05/16
4292
Аделаида
ATI.HeNRy в сообщении #1360326 писал(а):
счет известности

Диктуйте номер, записываю! :D

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение11.12.2018, 14:29 
Заслуженный участник
Аватара пользователя


01/09/13
4676

(Оффтоп)

kotenok gav в сообщении #1360435 писал(а):
ATI.HeNRy в сообщении #1360326 писал(а):
счет известности

Диктуйте номер, записываю! :D

Ай-ай, ведь было же
ATI.HeNRy в сообщении #1360326 писал(а):
счет известности не знаю

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение11.12.2018, 16:01 
Заслуженный участник
Аватара пользователя


23/07/05
17986
Москва
ATI.HeNRy в сообщении #1360411 писал(а):
И что Вы как цербер, кинулись на форумчанина(меня)
Да я тоже хотел кинуться, но подумал, что кто-нибудь и без меня кинется.
Скажите, а Вы в школе логарифмы изучали? Там буквально пяток формул, из которых ваше соотношение мгновенно следует.

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение11.12.2018, 20:40 


23/08/10
205
Someone в сообщении #1360466 писал(а):
Да я тоже хотел кинуться, но подумал, что кто-нибудь и без меня кинется

Желание было сильное?
Someone в сообщении #1360466 писал(а):
Там буквально пяток формул, из которых ваше соотношение мгновенно следует.

пяток, там максимум три. Вопрос, как раз в этом такие простые соотношение легко запоминаются, но этого соотношения я не помню, можно ли осторожно сделать такой вывод, что оно малополезное(малоиспользуемое)? а в следствии малоизвестные соотношения малополезные.

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение11.12.2018, 21:07 
Заслуженный участник
Аватара пользователя


16/07/14
9207
Цюрих
Это соотношение - очевидное следствие из более простых и существенно более полезных. Например из того что $a^\frac{1}{b} = c \leftrightarrow a = c^b$ и $e^{\ln x} = x$ (т.е. обе части равенства можно возводить в степень, и логарифм - обратная функция экспоненты). Или из $\ln a^b = b \ln a$, $\ln e = 1$ и $x = y \leftrightarrow \ln x = \ln y$.

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение11.12.2018, 21:33 
Заслуженный участник
Аватара пользователя


23/07/05
17986
Москва
ATI.HeNRy в сообщении #1360530 писал(а):
Желание было сильное?
Если я уступил эту возможность другому, то можно сделать вывод, что не очень сильное.

ATI.HeNRy в сообщении #1360530 писал(а):
там максимум три
Далее все буквы, кроме одного случая, обозначают положительные числа, основание логарифма $\neq 1$.
Список формул, который нужно помнить школьникам:
1) $a^{\log_ab}=b$ (определение логарифма);
2) $\log_abc=\log_ab+\log_ac$ (логарифм произведения);
3) $\log_a\frac bc=\log_ab-\log_ac$ (логарифм частного);
4) $\log_ab^c=c\log_ab$ (логарифм степени; здесь $c$ может быть любым действительным числом);
5) $\log_ab=\frac{\log_cb}{\log_ca}$ (замена основания логарифма);
6) $\log_ab=\frac 1{\log_ba}$ (частный случай предыдущей формулы при $c=b$).

Ваше соотношение — частный случай равенства $a^{\frac 1{\log_ba}}=b$, которое сразу следует из формул 6) и 1).
Что касается его известности, то оно изредка встречается в задачах для школьников и, разумеется, школьник, хорошо освоивший указанные выше $6$ формул, обойдётся без запоминания ещё и вашей формулы.

 Профиль  
                  
 
 Re: Малоизвестные (или не очень) красивые соотношения
Сообщение11.12.2018, 21:46 
Аватара пользователя


27/02/12
3942

(Оффтоп)

Вотжеж накинулись на человека... :mrgreen:
Можно подумать, всех с детсада восхищали бесконечные суммы и цепные дроби.
А человек в простоте увидел красоту.
Когда-то проникнется и чем-то менее элементарным. Всему своё время.
Хотите внушить ему, что ничего красивого в той формуле нет? :D
И кто знает - может именно красота простота спасет мир. :D

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 10 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group