Судя по описанию, ТС кладет сравнительно тонкий кусок металла на стол, и давит его (т.ч. все работает на сжатие).
В инженерной практике в такой формулировке ситуация интереса не представляет, особенно если речь идет о металле, а не о хрупких материалах. В реальной практике пластины почти всегда можно считать тонкими (критерий

, где

- толщина пластины,

- наименьший габарит, - практически всегда выполняется)
То, что тонкая пластина, закрепленная по краям, может давать "жесткость" при локальном воздействии на ее центр выше чем толстая, закрепленная целиком своей поверхностью - полезный, интересный и не очевидный эффект.
Это не очень понятно.Если "толстая пластина, закрепленная всей своей поверхностью" - это то, о чем говорилось выше, то для неё Вы будете считать сжатие, для тонкой, защемленной по всему периметру - изгиб. Соответственно момент сопротивления
у той, которую изгибают, пропорционально кубу толщины (... в рамках линейной теории)
и прогиб обратно пропорционален кубу толщины, - для защемленной по всему контуру пластины. Для свободно опираемой по всем краям пластинки чуть сложнее:

,
где

- максимальный прогиб.
Да нет, эффект как раз очевидный
Поясните, пожалуйста, отчего он очевидный.