2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Результаты математиков-любителей
Сообщение10.04.2018, 17:36 
Аватара пользователя


14/12/17
1524
деревня Инет-Кельмында
The chromatic number of the plane is at least 5, Aubrey D.N.J. de Grey
(Submitted on 8 Apr 2018) !!
https://arxiv.org/abs/1804.02385

Acute sets, D. Zakharov
https://arxiv.org/abs/1705.01171

....

PS Удивительно, но такой темы здесь не было.
Что может быть радостней для дилетанта, когда простые, не остепенившиеся люди делают открытия.
Неужели все участники или профессионалы, или ОТО-ниспровергатели? Не верю )

 Профиль  
                  
 
 Re: Результаты математиков-любителей
Сообщение10.04.2018, 17:57 


21/05/16
4292
Аделаида
grizzly в сообщении #1252536 писал(а):
Продолжим по традиции освещать в этой теме не только самые значимые достижения на передовой математики, но также результаты по таким задачам, которые просто формулируются, но сложно доказываются. Особенно если к ним приложили руку сильные мира сего.

На этот раз речь пойдёт об одной гипотезе Конвея (того самого), который недавно проиграл в этой жизни :D 1000 денег -- он ошибся в своей гипотезе.

Формулируется просто. Берём число, например 9, и функцию $f(n)$: $f(9)=f(3^2)=32$ (десятичное число образуется конкатенацией цифр разложения на множители). Теперь смотрим дальше $f(f(9))=f(32)=f(2^5)=25$, $f(25)=f(5^2)=52$, $f(52)=f(2^2\cdot 13)=2213$, $f(2213)=2213$. В конце концов получили неподвижную точку -- простое число.

Конвей предположил, что в конце концов всегда получится простое число. Но нет -- летом был найден контрпример.

Ссылки:
-- формулировка задачи Ковея (см. последнюю задачу в списке),
-- Первый комментарий любителя математики (не профессионала), с вопросом типа: "я нашёл, как об этом сообщить?" в каком-то популярном блоге (см. единственный комментарий внизу).
-- И уже через пару дней новость облетела весь мир.

(Благодарю гугл за оказанную мне помощь в расследовании этой интригующей истории :)
_______

Упомяну для истории в этой теме также задачу про остроугольные множества. Эта задача была существенно продвинута в весенне-летний период -- вышло 3 статьи, которые вывели задачу из вероятностного тупика и, судя по всему, довели почти до решения. Мотивацией для завершающей статьи послужили примеры, полученные на нашем форуме. Подробности со всеми ссылками можно проследить в этой теме форума.

 Профиль  
                  
 
 Re: Результаты математиков-любителей
Сообщение10.04.2018, 18:32 
Аватара пользователя


14/12/17
1524
деревня Инет-Кельмында
kotenok gav
Спасибо, добавил в закладки.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: tolstopuz


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group