2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 8, 9, 10, 11, 12, 13, 14, 15  След.
 
 Re: Хочу быть математиком.
Сообщение07.02.2018, 14:35 


11/10/17

11
eugensk, а вот есть один айтишник, некто Роман Добровенский, автор книги по математике: http://heller.ru/tutorial.pdf. Он признавался, что не знает и никогда не мог запомнить всю таблицу умножения. Будет ли для вас это стопроцентным аргументом в пользу низкого качества учебника?

 Профиль  
                  
 
 Re: Хочу быть математиком.
Сообщение07.02.2018, 14:44 
Аватара пользователя


21/09/12

1871
Yarkey в сообщении #1290793 писал(а):
есть один айтишник, некто Роман Добровенский, автор книги по математике... Он признавался, что не знает и никогда не мог запомнить всю таблицу умножения
Ну Вы же сказали. Приятно ощущать себя мудрее автора учебника. Кстати, ссылку приведёте?

 Профиль  
                  
 
 Re: Хочу быть математиком.
Сообщение07.02.2018, 14:54 


11/10/17

11

(Оффтоп)

atlakatl в сообщении #1290796 писал(а):
Кстати, ссылку приведёте?
В смысле, вам нужна подтверждающая информация из письменных источников? Я лучше приведу одну из цитат, а ссылку можно получить гуглопоиском.
Цитата:
можно привести в контрпример то, что вот лично я до сих пор не запомнил таблицу умножения, и вообще ненавижу арифметику. Я вообще никогда ничего не считаю, потому что это просто унизительно. Считать должен компьютер. Я же занимаюсь доказательствами и объяснениями природных фактов. Это не только мое мнение — это мнение любого человека, который к математике имеет хотя бы косвенное отношение.


-- 07.02.2018, 15:03 --

atlakatl в сообщении #1290796 писал(а):
Ну Вы же сказали.
Я спросил. Но вопрос был не к вам.
atlakatl в сообщении #1290796 писал(а):
Приятно ощущать себя мудрее автора учебника.
Давайте дождемся ответа самого eugensk о том, ощущает ли он себя мудрее автора учебника. Я не могу положиться исключительно на вашу проницательность.

 Профиль  
                  
 
 Re: Хочу быть математиком.
Сообщение07.02.2018, 15:13 
Аватара пользователя


21/09/12

1871
Yarkey в сообщении #1290801 писал(а):
Я лучше приведу одну из цитат, а ссылку можно получить гуглопоиском. Цитата
Есть гуглопоиск на некого киприота. Как его связать с Добровенским?

 Профиль  
                  
 
 Re: Хочу быть математиком.
Сообщение07.02.2018, 15:34 
Аватара пользователя


14/12/17
1513
деревня Инет-Кельмында
Yarkey в сообщении #1290793 писал(а):
eugensk, а вот есть один айтишник, некто Роман Добровенский, автор книги по математике: http://heller.ru/tutorial.pdf. Он признавался, что не знает и никогда не мог запомнить всю таблицу умножения. Будет ли для вас это стопроцентным аргументом в пользу низкого качества учебника?

Я читал его блог (мат.часть!), и учебник, и думаю, про таблицу умножения - это просто эпатаж :) Потом, он говорит про счёт, но не про решение содержательных задач.

Вообще подтверждаю, блог интересный, учебник вполне серьёзный (жаль, что незаконченный).

 Профиль  
                  
 
 Re: Хочу быть математиком.
Сообщение07.02.2018, 16:49 
Заслуженный участник


18/01/15
3224
anokata
То, что Вы написали --- подробно и связно. Я это одобряю (с точностью до некоторых нюансов, о которых сейчас говорить несвоевременно).

Сделаю подсказку, совсем небольшую. Если она Вам не поможет, потом сделаю еще одну. Подсказка такая. Я начинал решать эту задачу точно так же, и так же зашел в тот же тупик. Но потом понял (может быть, минут через 5, может через час ... не помню), что из этого тупика можно выйти, и задача таки имеет решение. Попробуйте и Вы его найти, скажем, в пределах суток.

Крайне не рекомендую возобновлять участие в дискуссии, инициированной Yarkey.

eugensk в сообщении #1290759 писал(а):
Надеюсь, vpb со мной согласен.
eugensk
Да, я с Вами согласен, в том, что доучить школьную математику --- это сейчас хорошая цель для anokata.
Относительно способов и критериев достижения могут быть расхождения.
Относительно же того, что дальнейшее изучение физико-математических, ИТ или технических наук требует знания школьной математики --- тут и обсуждать нечего, все очевидно. (Разница только в том, что одни специальности предполагают хорошее владение школьным материалом, а другие --- отличное).

Yarkey
Извините, я сейчас в дискуссии участвовать не могу. Может быть, потом. Говоря откровенно, то, что Вы писали, я считаю не предметом для дискуссии, а просто ересью. Хотелось бы, чтобы модераторы отделили часть этой темы в отдельную ветку.

-- 07.02.2018, 16:02 --

P.S. В школьной математике действительно есть некоторые вещи, нужность и востребованность которых под вопросом. Но это предмет для обсуждений между специалистами, в другом тоне.

 Профиль  
                  
 
 Re: Хочу быть математиком.
Сообщение07.02.2018, 17:27 


10/03/14
63
Рыбинск
vpb в сообщении #1290828 писал(а):
Сделаю подсказку, совсем небольшую. Если она Вам не поможет, потом сделаю еще одну. Подсказка такая. Я начинал решать эту задачу точно так же, и так же зашел в тот же тупик. Но потом понял (может быть, минут через 5, может через час ... не помню), что из этого тупика можно выйти, и задача таки имеет решение. Попробуйте и Вы его найти, скажем, в пределах суток.

У меня появилась пара догадок - надо додумать и привести к понятному виду.

 Профиль  
                  
 
 Re: Хочу быть математиком.
Сообщение08.02.2018, 08:43 


10/03/14
63
Рыбинск
9)
Заметим сначала следующее
Лемма (определения шарика за 1 тест). Если имеется парa шариков $ (a, b) $ на которой сработал тестер, и один точно обычный шарик $ O $, то можно за один тест определить какой шарик является титатновым. А именно, тестируем пару $ (a, O) $. Если тестер сработает, то поскольку $ O $ - обычный, $ a $ - должен быть титановым. Иначе, $ a $ - обычный, а поскольку среди $ (a, b) $ есть титановый, то это $ b $.

Далее действуем так.
Тестируем первые три пары следующим образом.
Если тестер срабатывает, то помещаем эту пару в $ A $.
Если тестер не срабатывает, то обозначаем любой из шариков этой пары как $ О $ - точно обычный.
Поскольку титановых шариков всего 2, то после теста 3х пар, обязательно будет одна на которой тестер не сработает и мы будем иметь обычный шарик $ O $.
Если мы имеем хотябы одну пару в $ A $, то пользуясь леммой, определяем титановый шарик в каждой найденной паре.
Если найдены не все титановые шары, продолжим тестировать пары, до тех пор пока не найдётся две пары, и пользуясь леммой мы определим все титановые шарики.
Покажем что при этом хватит 52-ух тестов.
Поскольку пар всего 50, и согласно лемме необходим один тест для определения титанового шара в паре, а пар с титановым шаром может быть не более двух, то и тестов будет сделано максимум 52.

 Профиль  
                  
 
 Re: Хочу быть математиком.
Сообщение08.02.2018, 12:44 


10/03/14
63
Рыбинск
Попробовал переобдумать 11) В комнате находятся 6 человек. Доказать, что среди них есть три попарно знакомых, или три попарно незнакомых.

Возьмём произвольного человека. Тогда он должен быть либо знаком либо нет с каждым из остальных 5ти.
Если он ни с кем из 5ти, 4ех, или 3ех человек не знаком, то мы имеем 5, 4 или 3 попарно незнакомых человека, что удовлетворяет условию задачи.
Если он не знаком c двумя, одним или со всеми знаком, то напротив, он знаком 3мя, 4мя или 5ю людьми, что даёт 3 или 4 или 5 попарно знакомых.
Больше вариантов нет.

Есть ещё такой вариант.
Допустим обратное. Т.е. пусть среди 6 человек нет 3х попарно знакомых и 3х попарно незнакомых. То есть среди 6 человек не более 2х попарно знакомых и 2х попарно незнакомых. Но поскольку каждая пара может быть либо знакома либо нет, получается что может быть не более 4х пар. А это не так.

И такой.
Пусть 6 человек это набор $(a, b, c, d, e, f)$.
Пусть любой $a$ знаком с $b$ и $c$, и незнаком с $d$ и $e$, но тогда остаётся ещё шестой человек $f$, с ним $a$ должен быть либо знаком либо нет, но тогда будет 3 пары знакомых либо 3 пары незнакомых. В остальных случаях очевидно будет 3 пары удовлетворяющие условию.

И вообще.

(Оффтоп)

Это если понимать условия так, что отношение знакомства нерефлексивно (многие люди с собой знакомы, но некоторый человек может не знать себя, ну бывает) и симметрично (что в реальности может быть не так, вполне можно быть знакомым с человеком, а он незнаком с вами). Тут зависит от понимания слов обычного языка, для которых не даны точные определения.
И ещё если условия понимать так, что найдётся по крайней мере 3 пары попарно знакомых или незнакомых. (а не будет ровно 3)

 Профиль  
                  
 
 Re: Хочу быть математиком.
Сообщение08.02.2018, 13:42 
Аватара пользователя


14/12/17
1513
деревня Инет-Кельмында
anokata
Равносильная формулировка для 11.

Есть фигура
Изображение
у неё все рёбра черные, и образуют $C_6^3 = 6\cdot 5\cdot 4/3!$ черных треугольников.
Вы какие-то ребра красите в синий цвет.
Надо доказать, что какие бы ребра Вы не покрасили, всегда можно найти или синий, или черный треугольник.
Цитата:
Если он ни с кем из 5ти, 4ех, или 3ех человек не знаком, то мы имеем 5, 4 или 3 попарно незнакомых человека, что удовлетворяет условию задачи

- это утверждение про 3,4,5 ребра сходящиеся в одной вершине, а нужны 3 последовательные ребра образующие треугольник.

 Профиль  
                  
 
 Re: Хочу быть математиком.
Сообщение08.02.2018, 14:45 


10/03/14
63
Рыбинск
eugensk в сообщении #1291110 писал(а):
- это утверждение про 3,4,5 ребра сходящиеся в одной вершине, а нужны 3 последовательные ребра образующие треугольник.

eugensk
Спасибо, ясно. Я неправильно понял слова "три попарно знакомых", я прочитал в них "три пары знакомых" вместо "три человека, каждая пара из которых знакома".

 Профиль  
                  
 
 Re: Хочу быть математиком.
Сообщение08.02.2018, 16:46 


10/03/16
4444
Aeroport

(Оффтоп)

Yarkey в сообщении #1290793 писал(а):
а вот есть один айтишник, некто Роман Добровенский, автор
блога под названием "математика и секс". Могу цитату привести прямо из топ-поста, нннада?


-- 08.02.2018, 16:46 --

eugensk
Рамсей? :D

 Профиль  
                  
 
 Re: Хочу быть математиком.
Сообщение08.02.2018, 17:16 
Заслуженный участник


18/01/15
3224
ozheredov
Товарищ, сделайте одолжение, воздержитесь от несвоевременных подсказок!

 Профиль  
                  
 
 Re: Хочу быть математиком.
Сообщение08.02.2018, 21:02 
Аватара пользователя


14/12/17
1513
деревня Инет-Кельмында
anokata в сообщении #1291095 писал(а):
если понимать условия так, что отношение знакомства нерефлексивно...Тут зависит от понимания слов обычного языка, для которых не даны точные определения.
На самом деле, в исходной формулировке у задачи совершенно четкое условие, и другую формулировку я дал чтобы быстрее показать где Вы ошиблись. Вообще, не всё всегда полностью оговаривается, некоторые очевидные вещи подразумеваются. Как например в аксиоме Через любые две точки можно провести прямую, и только одну не оговорили, что точки должны быть различными. Восстанавливать неоговоренное это тоже навык, и он тренируется )
В задаче о знакомствах симметричность и нерефлексивность, конечно же, подразумевались.
Попарно - понятие, которое надо правильно воспринимать. Например, три числа могут быть взаимно простые, и попарно взаимно простые - и это будет не одно и то же.

 Профиль  
                  
 
 Re: Хочу быть математиком.
Сообщение08.02.2018, 22:13 


10/03/14
63
Рыбинск
Кажется получилось решить 5)
5) Из А в В и из В в А на рассвете, одновременно, вышли навстречу друг другу, по одной дороге, два путника. Ровно в полдень они встретились. Они встретились в полдень, но не остановились поболтать, а каждый продолжал идти с той же скоростью, и первый пришeл в В в 4 часа дня, а второй в А в 9 вечера. В котором часу был в этот день рассвет?

Поскольку расстояние из А в В и из В в А одинаковое, их полный путь равен. Двигались они равномерно по условию, но поскольку пришли в разное время, а вышли в одно, значит скорости были разные.
Они вышил одновременно и встретились одновременно, значит прошло одно и тоже время.
Обозначим время которое они прошли с рассвета до полудня за $x$.
Скорости обозначим $v_1$ и $v_2$ соответственно.
Рассмотрим их пути до и после встречи.
Итак.
Первый прошёл первую часть пути до полудня за $x$ часов, а второй этот путь прошёл после полудня за 9 часов.
Тогда по равенству пути имеем $v_1\cdot x=v_2 \cdot 9$
Второй прошёл вторую часть пути до полудня за $x$ часов, а первый этот путь прошёл после полудня за 4 часа.
Тогда по равенству пути имеем $v_2 \cdot x=v_1 \cdot 4$
Получаем систему
$$\left\{
\begin{array}{rcl}
v_1 \cdot x &=& v_2 \cdot 9 \\
v_2 \cdot x &=& v_1 \cdot 4 \\
\end{array}
\right.$$

Выразим $v_1$ из второго равенства, получим $v_1 = v_2 \cdot x/4$ и поставим в первое.
Получается $v_2 \cdot x^2/4=v_2 \cdot 9$
Поделим обе части на $v_2$ и получим $x^2/4=9$, умножив на 4 получим $x^2=36$
Откуда находим $x = 6$
Значит за 6 часов до полудня они вышли и был рассвет. Т.е. рассвет был в 6:00.

-- 08.02.2018, 23:26 --

eugensk в сообщении #1291260 писал(а):
На самом деле, в исходной формулировке у задачи совершенно четкое условие, и другую формулировку я дал чтобы быстрее показать где Вы ошиблись. Вообще, не всё всегда полностью оговаривается, некоторые очевидные вещи подразумеваются. Как например в аксиоме Через любые две точки можно провести прямую, и только одну не оговорили, что точки должны быть различными. Восстанавливать неоговоренное это тоже навык, и он тренируется )
В задаче о знакомствах симметричность и нерефлексивность, конечно же, подразумевались.
Попарно - понятие, которое надо правильно воспринимать. Например, три числа могут быть взаимно простые, и попарно взаимно простые - и это будет не одно и то же.


Подходящая формулировка, теперь так о ней и думаю, но хотелось бы сначала решить в исходном виде.
Не редко бывают ошибки от неправильного понимания того, что подразумевалось. Хотя возможно от этого и есть какая-то польза в обучении.
Понятие "попарно" в таком контексте я встречал, но не пользовался, что меня и подвело. Хотя никогда не встречал разъяснения этого понятия. Не требую точных определений, но вот внимание бы обращать на такое не помешало.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 218 ]  На страницу Пред.  1 ... 8, 9, 10, 11, 12, 13, 14, 15  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group