2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Хорошие числа, плохие числа
Сообщение02.02.2018, 11:16 
Аватара пользователя


01/12/11

8634
Ярдена хочет разбить множество всех натуральных чисел, больших 1, на два класса - хорошие и плохие - так, чтобы произведение любых двух хороших чисел было плохим, а произведение любых двух плохих чисел было хорошим. Сможет ли она это сделать?

 Профиль  
                  
 
 Re: Хорошие числа, плохие числа
Сообщение02.02.2018, 12:24 
Заслуженный участник
Аватара пользователя


13/08/08
14496
А чего единичку выкинули? Не поможет, Ядрёна Матрёна.
Рассмотрим $2,4,8,16,32.$ :-(
Или имеется в виду произведение попарно различных? То есть произведение хорошего и плохого, а так же квадратов неопределено?

 Профиль  
                  
 
 Re: Хорошие числа, плохие числа
Сообщение02.02.2018, 18:02 
Аватара пользователя


01/12/11

8634
gris
Произведение хорошего и плохого в любом случае неопределено. А условие можно немного пошевелить, например, добавить, как Вы сказали, условие попарной различности.

 Профиль  
                  
 
 Re: Хорошие числа, плохие числа
Сообщение02.02.2018, 18:22 
Аватара пользователя


07/01/15
1244
Все равно не сможет.
Условно обозначим как $g$ хорошее число и как $b$ плохое число. Покажем, что произведение $gb$ не может быть ни плохим, ни хорошим.

Пусть оно плохое, т. е. $gb = b$. Умножим все справа на $b$. В левой части получим $gbb = gg = b$, а в правой $bb = g.$ Противоречие.

Случай $gb = g$ симметричен.

P. S. Таким образом, очередная попытка по-нашему, по-юношески разделить все на хорошее и плохое обломилась на противоречии :)

 Профиль  
                  
 
 Re: Хорошие числа, плохие числа
Сообщение02.02.2018, 18:38 
Заслуженный участник
Аватара пользователя


13/08/08
14496
Я бы предложил просто разделить всё на хороших и плохих без всяких условий. Потому что выкидывание квадратов тоже не помогает. Ну можно побольше прогрессию взять. Всё равно придём к противоречию. Собственно, прогрессия это же та же самая попытка разбиения, только с условием сложения. А чем больше число, тем у него больше представлений в виде суммы. Мне кажется, есть и более простое решение вместо приведения к противоречию всех возможных предположений и "хорошести" необходимого числа первых членов.

-- Пт фев 02, 2018 18:45:04 --

SomePupil, а никто и не требует, чтобы произведение хорошего с плохим было постоянного качества. Иногда оно хорошее, а иногда плохое.
Ага. Я не прав. Впрочем, прав в том, что более простое решение отыщется :-)

 Профиль  
                  
 
 Re: Хорошие числа, плохие числа
Сообщение02.02.2018, 18:55 
Экс-модератор
Аватара пользователя


23/12/05
12072
Не получится у Ядрены ничего.

Достаточно рассмотреть варианты расположения чисел $2, 3, 4$ между множествами хороших/плохих и вытекающие расположения их произведений и произведений произведений..., далеко копать не надо, чтобы для каждого варианта прийти к противоречию, что одно и то же число должно быть и хорошим и плохим.

 Профиль  
                  
 
 Re: Хорошие числа, плохие числа
Сообщение02.02.2018, 18:59 
Заслуженный участник
Аватара пользователя


16/07/14
9539
Цюрих
gris в сообщении #1289517 писал(а):
SomePupil, а никто и не требует, чтобы произведение хорошего с плохим было постоянного качества.
Так этого в рассуждениях SomePupil и не требуется. Рассмотрим любую конкретную пару из хорошего и плохого числа $g$ и $b$, и докажем, что $gb$ не является хорошим (т.к. $g \cdot gb$ хорошее), ни плохим (т.к. $gb \cdot b$ плохое).

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group