mihaild писал(а):
По-русски это будет

Именно так.И определение разложения куба натурального числа на сумму двух кубов "по-русски"будет выглядеть так:

provincialka писал(а):
Что такое "единичное приращение куба"?
Ну и насчет "любого" вы преувеличиваете все-таки... у вас самого пробелы в примерах.
В определении,которое теперь написано "по-русски","единичное приращение куба"- это член

.
В своем сообщении о разложении куба нечётного числа на сумму двух соседних кубов я с начала привёл разложения всех кубов по признаку "сумма
соседних кубов": у всех кубов в разложении стоят соседние кубы.Затем,применил к разложениям сформулированное выше определение. Получилось,что у некоторых кубов,разложение не законченное:полученный остаток больше единичного приращения (т.е. разности соседних кубов) наименьшего в разложении куба.Оказывается,их конечное разложение - разложение на два одинаковых куба и,конечно же,так как они не чётные, они не могут не иметь остаток,который будет "выравнивать" четность в разложении.
Следовательно, в таком разложении кубы этих чисел подтверждают теорему Ферма.Но остаются выделенные разложения,где и кубы-соседние,и остаток- меньше единичного приращения меньшего куба. Можно ли по каким то закономерностям в них,по тому как они расположены в таблице узнать,почему они обязательно с остатком?
Что касается остатка в разложениях,то он всегда

.Но в таком виде,для наших целей,как я уже говорил, он мало информативен.В нашем праве представить его так,как нам удобно-хоть суммой,хоть разностью,лишь бы это было в конечном счёте всегда

.Что бы было удобно определять остаток по отношению к единичному приращению,его необходимо представить числом кратным

плюс или минус число "добивающее" это число до величины остатка.В процессе работы с разложениями кубов я заметил интересную особенность:остаток всегда можно представить числом кратным

минус число равное

Повторяю - у всех разложений. Что это - случайность или закономерность?Похоже,всё таки,это закономерность,звучащая так:"В разложении любого куба нечетного числа на два куба, получающийся остаток всегда можно представить, как разность числа кратного шести и числа равного разности оснований раскладываемого куба и кубов получаемых при разложении "