Для физика самое главное понять - откуда что взялось и как это работает.Поэтому теорема Ферма на младших курсах физфака стояла в одном ряду с такими проблемами,требующими срочного решения,как общая теория поля и управляемый термоядерный синтез.Уже тогда,при наших бурных обсуждениях в стенах университетского общежития,робко звучало мнение,что, возможно, в ВТФ сформулировано свойство самих чисел,которое,как у всего "сущего в мире",определяется их сложной внутренней структурой.Это мнение с негодованием дружно отвергалось в пользу различных модификаций уравнения Ферма.Что поделаешь-мы были молоды и нам хотелось доказать всё и сразу.Это сейчас ,когда прошли годы,понимаешь,что ВТФ-это не короткий рассказ с невероятно замысловатым сюжетом,а ,скорее,увлекательный роман,где главным героем является не уравнение Ферма,а сами числа.
Как известно,в физике отрицательный результат не является поводом для огорчения,типа "Обидно,да!".Иногда он важнее положительного и является началом прорыва в неизведанные ещё области.Классический пример-опыт Майкельсона.
О чём нам говорит неудача с доказательством ВТФ для соседних кубов?Основной закон сложения арифметических прогрессий и его следствия,которые несомненно действуют внутри кубов,не являются определяющими при разложении куба на составные части.Тогда какой закон управляет этим? Вопрос...
Как физик,я привык задавать вопросы природе и и на её ответах строить уже свои теории.Почему бы сейчас не поступить так же? Мы имеем интереснейший объект-кубы натуральных чисел.Мы знаем их внутреннюю структуру.Почему бы не попробовать разложить кубы нечётных чисел по порядку на соседние кубы? Для начала,на самое простое -на соседний куб и единичное приращение.Сделать такую таблицу:





















Может быть,в этих разложениях имеются какие то интересные закономерности,а может быть,они совершенно хаотичны и ничего интересного нам не скажут.
Ведь этого никто не делал.Или я ошибаюсь?Если кто то знает - может заполнить эту таблицу или дать ссылку.Было бы очень интересно сравнить.