Спрашивается, для чего в теории цепей переходят к комплексным числам-то? Чтобы не возиться с косинусами, не дифференцировать и не интегрировать. Вместо косинусов – синусов экспонента по формуле Эйлера. Что делает передаточная функция? Сдвигает по фазе и изменяет амплитуду, этот сдвиг по фазе и ослабление по амплитуде и можно найти, если передаточную функцию представите в виде экспоненты, для чего и нужна формула Эйлера. Очевидно, чтобы ей воспользоваться, надо уничтожить в знаменателе мнимости, формула разности квадратов вам в помощь.
Попробовал через разность квадратов.


Чтобы дальше воспользоваться формулой Эйлера, нужно найти как минимум модуль этого комплексного числа.. Громоздко получается. Пробую вернуться к изначальному варианту. Наша передаточная характеристика - отношение двух комплексных чисел. При делении двух комплексных чисел их модули делятся, а аргументы - вычитаются.

Модуль:

Аргумент:

Сворачиваю в формулу Эйлера:
![$k=\dfrac{\sqrt{1+(R2\omega c)^2}}{\sqrt{1+((R1+R2)\omega c)^2}}\cdot \exp \left[ i(arctg(R2\omega c)-arctg((R1+R2)\omega c) \right]$ $k=\dfrac{\sqrt{1+(R2\omega c)^2}}{\sqrt{1+((R1+R2)\omega c)^2}}\cdot \exp \left[ i(arctg(R2\omega c)-arctg((R1+R2)\omega c) \right]$](https://dxdy-04.korotkov.co.uk/f/3/c/f/3cf9b2a25b6b02ec74a598c7dc2c489182.png)
Лучше, на мой взгляд, совсем не стало :(