2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение05.12.2017, 16:53 


06/02/14
186
Ну,слава богу,"форум" заработал конструктивно.Не буду настаивать на термине"суперпозиция",тем более,что он уже занят.Про проблему Варинга действительно не слышал.Спасибо,что подсказали и дали ссылку.Обязательно посмотрю.
Полагаю,теперь можно приступить к построению таблицы разложенинй нечётных кубов на сумму соседних кубов.Это конечно сложнее,но и результат-интереснее.Вот эта таблица.

$  ..1^3   =  (2\cdot 0+1)^3  =  1 \qquad  \qquad\qquad  \qquad\qquad \qquad \qquad  \qquad  $
$  ..3^3   =  (2\cdot 1+1)^3  =  2^3 + 1 + 6\cdot 3 + 0   $
$  ..5^3   =  (2\cdot 2+1)^3  =  4^3 + 3^3 +6\cdot 6 - 2  $
$  ..7^3   =  (2\cdot 3+1)^3  =  6^3 +  5^3 +6\cdot 1 - 4  $
$  ..9^3   =  (2\cdot 4+1)^3  =  7^3 +   6^3 + 6\cdot29 - 4  \qquad \qquad  \qquad $
$  11^3 =  (2\cdot 5+1)^3  =  9^3 +   8^3 +6\cdot 16 - 6 $
$  13^3 =  (2\cdot 6+1)^3  =  10^3 +  9^3 + 6\cdot 79 - 6  \qquad  \qquad $
$  15^3 =  (2\cdot 7+1)^3  =  12^3 +  11^3 + 6\cdot 54 - 8  \qquad  \qquad $
$  17^3 =  (2\cdot 8+1)^3  =  13^3 +   12^3 + 6\cdot 166 - 8 $
$  19^3 =  (2\cdot 9+1)^3  =  15^3 +    14^3 + 6\cdot 125 - 10   \qquad \qquad  \qquad$
$  21^3 =  (2\cdot 10+1)^3=  17^3 +    16^3 + 6\cdot 44 - 12   $
$  23^3 =  (2\cdot 11+1)^3  =  18^3 +   17^3 + 6 \cdot 239 - 12 $
$  25^3 =  (2\cdot 12+1)^3  =  20^3 +   19^3 + 6\cdot 130 - 14  \qquad  \qquad$
$  27^3 =  (2\cdot 13+1)^3  =  21^3 +    20^3 + 6\cdot 406 - 14  $
$  29^3 =  (2\cdot 14+1)^3  =  23^3 +   22^3 + 6\cdot 265 - 16  $
$  31^3 =  (2\cdot 15+1)^3  =  25^3 +   24^3 + 6\cdot 60 - 18 $
$  33^3 =  (2\cdot 16+1)^3  =  26^3 +    25^3 + 6\cdot 459 - 18 $
$  35^3 =  (2\cdot 17+1)^3  =  28^3 +  27^3 + 6\cdot 210 -  20       \qquad$
$  37^3 =  (2\cdot 18+1)^3  =  29^3 + 28^3 + 6\cdot 722 - 20   $
$  39^3 =  (2\cdot 19+1)^3  =  31^3 + 30^3 + 6\cdot 425 - 22  \qquad \qquad $
$  41^3 =  (2\cdot 20+1)^3  =  33^3 + 32^3 + 6 \cdot 40-24  \qquad \qquad $
$  43^3 =  (2\cdot 21+1)^3  =  34^3 + 33^3 + 6 \cdot 715-24  \qquad \qquad $
$  45^3 =  (2\cdot 22+1)^3  =  36^3 + 35^3 + 6 \cdot 270-26 \qquad \qquad $
$  47^3 =  (2\cdot 23+1)^3  =  37^3 + 36^3 + 6 \cdot 1090-26  \qquad \qquad $
$  49^3 =  (2\cdot 24+1)^3  =  39^3 + 38^3 + 6 \cdot 581-28  \qquad \qquad $
$  51^3 =  (2\cdot 25+1)^3  =  40^3 + 39^3 + 6 \cdot 1560-28  \qquad \qquad $
$  53^3 =  (2\cdot 26+1)^3  =  42^3 + 41^3 + 6 \cdot 983-30  \qquad \qquad $
$  55^3 =  (2\cdot 27+1)^3  =  44^3 + 43^3 + 6 \cdot 286-32  \qquad \qquad $
$  57^3 =  (2\cdot 28+1)^3  =  45^3 + 44^3 + 6 \cdot 1486-32  \qquad \qquad $

Вот такая таблица получается.Не буду пока ничего говорить:пара глаз -хорошо,а целый "интернет"-лучше.

 Профиль  
                  
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение05.12.2017, 18:34 
Аватара пользователя


26/09/16
198
Снегири
Стесняюсь спросить, а что интересного в таком результате?

Также, если честно, не вполне понимаю, зачем нужно было писать

PhisicBGA в сообщении #1272269 писал(а):
$  31^3 =  (2\cdot 15+1)^3  =  25^3 +   24^3 + 6\cdot 60 - 18 $


Разве это не то же самое, что

$  31^3 =  (2\cdot 15+1)^3  =  25^3 +   24^3 + 6\cdot 57 $

Или автору очень хотелось, чтобы в конце были последовательные чётные числа?

 Профиль  
                  
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение05.12.2017, 19:06 


21/11/10
546
PhisicBGA в сообщении #1272269 писал(а):
Вот такая таблица получается.Не буду пока ничего говорить:пара глаз -хорошо,а целый "интернет"-лучше.

PhisicBGA

На первый взгляд, Ваша таблица представляет собой числовой "пример-наблюдение" того факта, что сумма двух соседних кубов не куб.
А как обстоят дела с таблицей с разности соседних кубов?

 Профиль  
                  
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение05.12.2017, 20:44 


21/11/10
546
ishhan в сообщении #1272306 писал(а):
На первый взгляд, Ваша таблица представляет собой числовой "пример-наблюдение" того факта, что сумма двух соседних кубов не куб.

Но, если внимательней присмотреться и слегка призадуматься, то вспоминаются институтские лабы по химии и физике, когда результат, который нужно получить известен и проще всего его подогнать о чём упоминала уважаемая provincialka
Кроме того, как объяснить отсутствие строк в которых встречаются соседние числа (29,30) (31,32) (34,35).
По-моему фокус не удался)))

 Профиль  
                  
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение07.12.2017, 22:44 


06/02/14
186
ishhan писал(а):
когда результат, который нужно получить известен и проще всего его подогнать о чём упоминала уважаемая provincialka


Как можно подогнать объективную реальность?Кубы нечетных чисел так раскладываются объективно.Ну,мама их такими родила.Я то здесь причём?Потом,-зачем мне это нужно?Я ничего не пытаюсь доказать.Просто приоткрываю дверь в удивительный мир кубов,что бы показать,что они не статисты для уравнения Ферма,у которых в основном одно свойство-делиться.У них много интересных свойств.И свойство,сформулированное в теореме Ферма - это одно из их свойств,обусловленное особенностями их внутренней структуры.И оно должно проявляться в особенностях их реального разложения.

ishhan писал(а):
А как обстоят дела с таблицей с разности соседних кубов?


Дела обстоят хорошо - это первая таблица в этом сообщении.

SVD-d писал(а):


Также, если честно, не вполне понимаю, зачем нужно было писать

PhisicBGA в сообщении #1272269 писал(а):
$  31^3 =  (2\cdot 15+1)^3  =  25^3 +   24^3 + 6\cdot 60 - 18 $


Разве это не то же самое, что

$  31^3 =  (2\cdot 15+1)^3  =  25^3 +   24^3 + 6\cdot 57 $

Или автору очень хотелось, чтобы в конце были последовательные чётные числа?


Это уже интересный вопрос.Если бы я так "округлял"разложения,то не нашел бы той интересной закономерности,которая присуща, по видимому,любому разложению куба нечётного числа (в выводах по первой таблице она стоит на первом месте):
1.Последний член разложения всегда равен по абсолютной величине разности раскладываемого числа и суммы
получаемых при разложении кубов.

Если этого нет-значит разложение выполнено не верно.Так, для примера,проведем разложение $23^3$
от суммы соседних кубов до их разности:$$23^3=18^3+17^3+6\cdot 239 -12$$
$$23^3=19^3+17^3+6\cdot 68 -13$$
$$23^3=20^3+16^3+6\cdot 14 -13$$
$$23^3=21^3+14^3+6\cdot 29 -12$$
$$23^3=22^3+11^3+6\cdot 33 -10$$

ishhan писал(а):
как объяснить отсутствие строк в которых встречаются соседние числа (29,30) (31,32) (34,35).

Вопрос ещё интереснее,но его обсудим в следующий раз.

 Профиль  
                  
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение07.12.2017, 22:49 
Заслуженный участник
Аватара пользователя


23/07/05
17982
Москва
PhisicBGA в сообщении #1272984 писал(а):
Как можно подогнать объективную реальность?
Речь идёт не о подгоне реальности, а о подгоне формул к реальности. Хотя я, например, пока не понял, что Вы имеете в виду. Ваши разложения для меня выглядят загадочно. Это не разложение в сумму соседних кубов, потому что присутствуют дополнительные положительные и отрицательные слагаемые, которые выглядят достаточно произвольными. Возможно точно сформулировать, что Вы хотите получить?

-- Чт дек 07, 2017 22:52:46 --

PhisicBGA в сообщении #1272984 писал(а):
1.Последний член разложения всегда равен по абсолютной величине разности раскладываемого числа и суммы
получаемых при разложении кубов.

Если этого нет-значит разложение выполнено не верно.
Тяжёлый случай.

 Профиль  
                  
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение08.12.2017, 14:13 
Аватара пользователя


26/09/16
198
Снегири
PhisicBGA в сообщении #1272984 писал(а):
Если этого нет-значит разложение выполнено не верно.

В смысле, неверно?
Давайте подставим:
$31^3 = 25^3 + 24^3 + 6 \cdot 57$

$29791 = 15625 + 13824 + 342$

$29791 = 29791$
Вроде, всё верно.

PhisicBGA в сообщении #1272984 писал(а):
1.Последний член разложения всегда равен по абсолютной величине разности раскладываемого числа и суммы
получаемых при разложении кубов.

Другими словами, при разложении числа на набор из трёх, последнее число в этом наборе равно разности между исходным и суммой первых двух в этом наборе? Это, конечно, интересный математический факт, но не думаю, что когда Пьер Ферма писал про своё "поистине чудесное доказательство", то имел в виду именно его.

ishhan в сообщении #1272350 писал(а):
Кроме того, как объяснить отсутствие строк в которых встречаются соседние числа (29,30) (31,32) (34,35).

Очень легко:
$39^3 = 30^3 + 29^3 + 6 \cdot 1325 - 20$

 Профиль  
                  
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение08.12.2017, 19:30 


21/11/10
546
PhisicBGA в сообщении #1272269 писал(а):
Полагаю,теперь можно приступить к построению таблицы разложенинй нечётных кубов на сумму соседних кубов

Чего уж там мелочиться с соседними кубами!
Давайте мыслить глобально.
Уважаемый PhisicBGA
Постройте пожалуйста для любителей ВТФ3 таблицу всех возможных представлений нечётного целого числа $n^3$ в виде суммы двух целых кубов и целого числа 6r+m $n^3=p^3+q^3+6r+m$
где целые числа p и q меньше n.
Заранее благодарен.

 Профиль  
                  
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение10.12.2017, 20:05 


06/02/14
186
Всё здорово,остроумно, но слишком поверхностно:нет желания вглядеться в цифры,подумать.Думаю,что заданные вопросы разрешаться по мере дальнейшего анализа таблицы.
Первое,что бросается в глаза-почти регулярное повторение последнего члена соседних разложений. Таблица,как бы расслаивается,распадается на две.Давайте так и сделаем:


$$  1^3   =  (2\cdot 0+1)^3  =  1 \qquad  \qquad\qquad   $$
$  3^3   =  (2\cdot 1+1)^3  =  2^3 + 1 + 6\cdot 3 + 0   $
$$   5^3   =  (2\cdot 2+1)^3  =  4^3 + 3^3 +6\cdot 6 - 2 $$ $\boxed { 7^3   =  (2\cdot 3+1)^3  =  6^3 +  5^3 +6\cdot 1 - 4 }  $
$$  9^3   =  (2\cdot 4+1)^3  =  7^3 +   6^3 + 6\cdot29 - 4  \qquad   $$
$  \boxed { 11^3 =  (2\cdot 5+1)^3  =  9^3 +   8^3 +6\cdot 16 - 6 }$
$$  13^3 =  (2\cdot 6+1)^3  =  10^3 +  9^3 + 6\cdot 79 - 6  \qquad  \qquad $$
$ \boxed {  15^3 =  (2\cdot 7+1)^3  =  12^3 +  11^3 + 6\cdot 54 - 8}  \qquad  \qquad $
$$  17^3 =  (2\cdot 8+1)^3  =  13^3 +   12^3 + 6\cdot 166 - 8 $$
$  19^3 =  (2\cdot 9+1)^3  =  15^3 +    14^3 + 6\cdot 125 - 10   \qquad \qquad  \qquad$
$$ \boxed {  21^3 =  (2\cdot 10+1)^3=  17^3 +    16^3 + 6\cdot 44 - 12}   $$
$  23^3 =  (2\cdot 11+1)^3  =  18^3 +   17^3 + 6 \cdot 239 - 12 $
$$  \boxed { 25^3 =  (2\cdot 12+1)^3  =  20^3 +   19^3 + 6\cdot 130 - 14 } \qquad  \qquad$$
$  27^3 =  (2\cdot 13+1)^3  =  21^3 +    20^3 + 6\cdot 406 - 14  $
$$  29^3 =  (2\cdot 14+1)^3  =  23^3 +   22^3 + 6\cdot 265 - 16  $$
$ \boxed {  31^3 =  (2\cdot 15+1)^3  =  25^3 +   24^3 + 6\cdot 60 - 18 } $
$$  33^3 =  (2\cdot 16+1)^3  =  26^3 +    25^3 + 6\cdot 459 - 18 $$
$ \boxed {  35^3 =  (2\cdot 17+1)^3  =  28^3 +  27^3 + 6\cdot 210 -  20}       \qquad$
$$  37^3 =  (2\cdot 18+1)^3  =  29^3 + 28^3 + 6\cdot 722 - 20   $$
$  \boxed { 39^3 =  (2\cdot 19+1)^3  =  31^3 + 30^3 + 6\cdot 425 - 22 } \qquad \qquad $
$$ \boxed {  41^3 =  (2\cdot 20+1)^3  =  33^3 + 32^3 + 6 \cdot 40-24  }  $$
$  43^3 =  (2\cdot 21+1)^3  =  34^3 + 33^3 + 6 \cdot 715-24  \qquad \qquad $
$$ \boxed {  45^3 =  (2\cdot 22+1)^3  =  36^3 + 35^3 + 6 \cdot 270-26} \qquad \qquad $$
$  47^3 =  (2\cdot 23+1)^3  =  37^3 + 36^3 + 6 \cdot 1090-26  \qquad \qquad $
$$ \boxed {  49^3 =  (2\cdot 24+1)^3  =  39^3 + 38^3 + 6 \cdot 581-28 } \qquad \qquad $$
$  51^3 =  (2\cdot 25+1)^3  =  40^3 + 39^3 + 6 \cdot 1560-28  \qquad \qquad $
$$  53^3 =  (2\cdot 26+1)^3  =  42^3 + 41^3 + 6 \cdot 983-30  \qquad \qquad $$
$  \boxed { 55^3 =  (2\cdot 27+1)^3  =  44^3 + 43^3 + 6 \cdot 286-32  }  $
$$  57^3 =  (2\cdot 28+1)^3  =  45^3 + 44^3 + 6 \cdot 1486-32  \qquad \qquad $$

О выделенных строчках я скажу позже.Посмотрим,по каким признакам произошёл распад.В левой таблице - разложение нечетных чисел с нечётным основанием: $(2\cdot 3); (2\cdot 5); (2\cdot 7)...$В правой - разложение нечётных чисел с чётным основанием: $(2\cdot 2); (2\cdot 4); (2\cdot 6)...$ О чём это говорит?В этой связи,думаю,надо вспомнить,те формулы разложения кубов по квадратам,что были получены мной с помощью внутренней структуры кубов и приводились в моём раннем сообщении.

asta писал(а):
Почему это 4, а не 8? Разве не удобнее разложить куб на восемь угловых кубов и симметричную сердцевину?

krestovski писал(а):
Вот скажите честно, - в результате всех сделанных Вами преобразований для получения этих двух соотношений, Вы что-то новое узнали о кубах? -

Уважаемый krestovski и уважаемый lasta !Спасибо Вам за Ваши развёрнутые ответы.Особое спасибо Вам,уважаемый krestovski .за этот вопрос.Это - главный вопрос,который сразу,как лакмусовая бумага,выявляет цену сути всех заявлений и творений.Хорошо бы ,если бы каждый сам себе почаще задавал подобный вопрос.Хотя, Великая теорема Ферма-явление уникальное.Она не только имеет большое значение в науке,как катализатор новых идей,но и давно приобрела большое социальное значение:благодаря простоте и красоте свое формулировки она,как Храм,куда на равных приходят и академик и зубной техник,чтобы прикоснуться к великому и вечному,почувствовать себя приобщенным к творчеству великих умов человечества.Просто они часто путают свои личные победы и достижения с действительно таковыми,и спешат вынести их на всеобщее обсуждение.
Теперь по сути...Честно,так честно...На этом форуме,кроме основной задачи,у меня была ещё и сверх задача: выяснить вопрос - насколько уникальна сделанная мной расшифровка внутренней структуры кубов.Я получил явный вид того ,что скрывает в себе формула $X^3 =(X-1)X(X+1) +X $.В каждом сообщении я твердил о внутренней структуре кубов, "мозолил" глаза этой формулой,что бы узнать - знает ли кто нибудь её расшифровку.Привёл явную подсказку - выражение $(2a +1)a(a+1)$,шестая часть которого давно известна в математике и имеет своё название.Акцентировал внимание на на коэффициенте 4, роль которого была бы сразу понятна,знающим явный вид внутренней структуры куба.Теперь я убедился,что это действительно никому не известное ,уникальное знание и хотел бы впервые представить формулы явного вида внутренней структуры кубов здесь на этом форуме.Уверен,что впереди у них долгая и счастливая жизнь в математике.Вот они:
$$X^3= (2a+1)^3 = 6[2^2 +4^2 +6^2+8^2 +.......+ (2a)^2] +(2a+1)$$,где $a$-целое число
$$Y^3= (2a)^3 = 6[1+3^2 +5^2 +7^2+9^2 +.......+ (2a -1)^2] +(2a)$$,где $a$-целое число.
Согласитесь - красивые формулы.Теперь Вы видите откуда берется 4 в разложении нечётных кубов и,что никакая 8 или другое чётное число там быть не может.

Эти формулы говорят нам о том,что в мире кубов существует асимметрия по отношению к кубам разной четности и она связана с их внутренней структурой.И теперь,мы видим,что эта асимметрия существует и в кубах чисел одной четности,но с разными по чётности основаниями. По видимому,эта закономерность более глубокая и,может быть,именно она не даёт нам возможность применить "метод бесконечного спуска",так хорошо работающий для чётных с чётным основанием степеней, для степеней нечётных.
Теперь-самое главное. о чем нам говорят эти таблицы разложений на соседние кубы.В физике есть такое понятие,как"неустойчивое или возбуждённое состояние тела".Шарик на вершине горки находиться в неустойчивом состоянии,поскольку обладает избытком потенциальной энергии.Атом,поглотивший квант света,находиться в возбуждённом состоянии из которого обязательно перейдет в устойчивое,испустив этот квант.Все разложения в рассматриваемой таблице (а точнее- в двух таблицах) в не выделенных строчках - это неустойчивые разложения,разложения не окончательные.
Разложение на соседние кубы и просто остаток- молоинформативно. Нас ещё интересует - а окончательное ли это разложение?Поскольку единичное приращение куба - число всегда кратное $6$ плюс 1 ,поэтому,зная особенность любого разложения кубов по последнему члену,мы прибавляем к нашему остатку этот член и делим полученное число на $6$.Если разложение выполнено верно,то результатом деления всегда будет целое число.Именно это я имел в виду,когда говорил о первой особенности разложений .
Так вот в разложениях, которые не выделены,остаток больше единичного приращения младшего куба.Но это ведь соседние кубы.С учётом этого,таблицы разложения будут следующие:
$$  1^3   =  (2\cdot 0+1)^3  =  1 \qquad  \qquad\qquad   $$
$  3^3   =  (2\cdot 1+1)^3  =  2^3 + 2^3 + 6\cdot 2 -1   $
$$   5^3   =  (2\cdot 2+1)^3  =  4^3 + 4^3 +6\cdot 0 - 3 $$ $\boxed { 7^3   =  (2\cdot 3+1)^3  =  6^3 +  5^3 +6\cdot 1 - 4 }  $
$$  9^3   =  (2\cdot 4+1)^3  =  7^3 +   7^3 + 6\cdot 8 - 5  \qquad   $$
$  \boxed { 11^3 =  (2\cdot 5+1)^3  =  9^3 +   8^3 +6\cdot 16 - 6 }$
$$  13^3 =  (2\cdot 6+1)^3  =  10^3 +  10^3 + 6\cdot 34 - 7  \qquad  \qquad $$
$ \boxed {  15^3 =  (2\cdot 7+1)^3  =  12^3 +  11^3 + 6\cdot 54 - 8}  \qquad  \qquad $
$$  17^3 =  (2\cdot 8+1)^3  =  13^3 +   13^3 + 6\cdot 88 - 9$$
$  19^3 =  (2\cdot 9+1)^3  =  15^3 +    15^3 + 6\cdot 20 - 11   \qquad \qquad  \qquad$
$$ \boxed {  21^3 =  (2\cdot 10+1)^3=  17^3 +    16^3 + 6\cdot 44 - 12}   $$
$  23^3 =  (2\cdot 11+1)^3  =  18^3 +   18^3 + 6 \cdot 86 - 13 $
$$  \boxed { 25^3 =  (2\cdot 12+1)^3  =  20^3 +   19^3 + 6\cdot 130 - 14 } \qquad  \qquad$$
$  27^3 =  (2\cdot 13+1)^3  =  21^3 +    21^3 + 6\cdot 196 - 15  $
$$  29^3 =  (2\cdot 14+1)^3  =  23^3 +   23^3 + 6\cdot 12 - 17  $$
$ \boxed {  31^3 =  (2\cdot 15+1)^3  =  25^3 +   24^3 + 6\cdot 60 - 18 } $
$$  33^3 =  (2\cdot 16+1)^3  =  26^3 +    26^3 + 6\cdot 134 - 19 $$
$ \boxed {  35^3 =  (2\cdot 17+1)^3  =  28^3 +  27^3 + 6\cdot 210 -  20}       \qquad$
$$  37^3 =  (2\cdot 18+1)^3  =  29^3 + 29^3 + 6\cdot 316 - 21   $$
$  \boxed { 39^3 =  (2\cdot 19+1)^3  =  31^3 + 30^3 + 6\cdot 425 - 22 } \qquad \qquad $
$$ \boxed {  41^3 =  (2\cdot 20+1)^3  =  33^3 + 32^3 + 6 \cdot 40-24  }  $$
$  43^3 =  (2\cdot 21+1)^3  =  34^3 + 34^3 + 6 \cdot 154-25  \qquad \qquad $
$$ \boxed {  45^3 =  (2\cdot 22+1)^3  =  36^3 + 35^3 + 6 \cdot 270-26} \qquad \qquad $$
$  47^3 =  (2\cdot 23+1)^3  =  37^3 + 37^3 + 6 \cdot 424-27  \qquad \qquad $
$$ \boxed {  49^3 =  (2\cdot 24+1)^3  =  39^3 + 38^3 + 6 \cdot 581-28 } \qquad \qquad $$
$  51^3 =  (2\cdot 25+1)^3  =  40^3 + 40^3 + 6 \cdot 780-29  \qquad \qquad $
$$  53^3 =  (2\cdot 26+1)^3  =  42^3 + 42^3 + 6 \cdot 122-31  \qquad \qquad $$
$  \boxed { 55^3 =  (2\cdot 27+1)^3  =  44^3 + 43^3 + 6 \cdot 286-32  }  $
$$  57^3 =  (2\cdot 28+1)^3  =  45^3 + 45^3 + 6 \cdot 496-33  \qquad \qquad $$

Получается,что у кубов некоторых нечётных чисел нет разложения на соседние кубы.

 Профиль  
                  
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение11.12.2017, 00:05 
Заслуженный участник
Аватара пользователя


23/07/05
17982
Москва
PhisicBGA в сообщении #1273742 писал(а):
Получается,что у кубов некоторых нечётных чисел нет разложения на соседние кубы.
Пока Вы не определите точно, что такое "разложение на соседние кубы", в котором почему-то, кроме кубов, присутствуют ещё два слагаемых, не являющихся "соседними кубами", ничего нельзя ни доказать, ни опровергнуть. Пока мы видим кучу числовых равенств, которые выглядят достаточно произвольными. И Вы постоянно меняете правила.

 Профиль  
                  
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение11.12.2017, 11:10 


21/11/10
546
PhisicBGA в сообщении #1273742 писал(а):
Теперь я убедился,что это действительно никому не известное ,уникальное знание и хотел бы впервые представить формулы явного вида внутренней структуры кубов здесь на этом форуме.Уверен,что впереди у них долгая и счастливая жизнь в математике.Вот они:
$$X^3= (2a+1)^3 = 6[2^2 +4^2 +6^2+8^2 +.......+ (2a)^2] +(2a+1)$$

Уважаемый PhisicBGA!
Можно ли применить Ваш метод, раскрывающий внутреннюю структуру кубов, для нахождения решений уравнений:$$x^3+y^3+z^3=k$$
см В.Серпинский 1961год "О решении уравнений в целых числах" стр 60.

 Профиль  
                  
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение11.12.2017, 21:49 
Аватара пользователя


25/02/07

887
Симферополь
PhisicBGA в сообщении #1273742 писал(а):
это действительно никому не известное ,уникальное знание и хотел бы впервые представить формулы явного вида внутренней структуры кубов здесь на этом форуме

Формулу явного вида внутренней структуры кубов, как и любых других степеней числа, здесь на этом форуме я представил так давно, что уже забыл когда это было. Вот она для кубов.

Пусть

$ B = \begin{pmatrix}
1 & 0 & 0 & 0 \\ 
1 & 1 & 0 & 0 \\ 
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{pmatrix}$ , $
P = \begin{pmatrix}
1 & 0 & 0 & 0 \\ 
1 & 2 & 0 & 0 \\ 
0 & 2 & 3 & 0 \\
0 & 0 & 3 & 4
\end{pmatrix}$ , $ e_1 = (1,0,0,0) $ , $ e^1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

тогда

$ x^3 = e_1 (P^3)^T B^{x-1}e^1  $

Для любой другой степени $ x^n $ просто увеличьте размерность всех матриц до числа $ n+1 $ , а степень матрицы $ P $ до числа $ n $ .

 Профиль  
                  
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение12.12.2017, 18:38 


06/02/14
186
PhisicBGA писал(а):
Я ничего не пытаюсь доказать.Просто приоткрываю дверь в удивительный мир кубов


Вот видите,в какой заповедник мы попадаем.Похоже,здесь не ступала нога математика.Даже определения этому нет.Поэтому некоторые думают,что в разложении куба на сумму соседних кубов должны быть только соседние кубы и ничего больше.Хотя Ферма в своей теореме ещё пять веков назад говорил:"Невозможно разложить куб на два куба ..." Так чего же мы доказывали все это время? А вот чего...Один гений - сформулировал теорему,но не доказал её.Другой гений - пытаясь найти доказательство этой теоремы,заменил её уравнением.Ну,не может один гений повторить другого по определению.
Он обязательно внесёт что то своё.Так здесь и получилось.За кем же пошли в дальнейшем математики:за математиком-любителем или за математиком двора Её Императорского Величества?Ответ,по моему,очевиден.И вот новые поколения математиков,под грустным взглядом Ферма,начали крутить и решать это уравнение,и оно, фактически, заменило собой саму теорему. Кому теперь интересно,что истинная теорема Ферма - о свойствах чисел,об их разложении.
Придётся нам заново открывать теорему Ферма и, действительно, - начать следует с определений.Я не математик,и поэтому давайте вместе попробуем дать определение,что значит разложить куб на соседние кубы.Кто как думает?

 Профиль  
                  
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение12.12.2017, 18:55 
Аватара пользователя


25/02/07

887
Симферополь
Лучше подумайте сразу над тем, что такое прибавить к одному числу другое число. Даю подсказку: одинаковы ли при суммировании роли слагаемых - того, к которому прибавляют и того, которое прибавляют?

 Профиль  
                  
 
 Re: Реальное разложение кубов нечётных чисел на соседние кубы
Сообщение12.12.2017, 19:52 
Заслуженный участник
Аватара пользователя


23/07/05
17982
Москва
PhisicBGA в сообщении #1274405 писал(а):
Ну,не может один гений повторить другого по определению.
Он обязательно внесёт что то своё.Так здесь и получилось.
Ладно, мы уже поняли, что Вы гений. Так определение разложения на соседние кубы будет или нет? К сожалению, в математике гении не освобождаются от необходимости определять понятия, которые они вводят.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 75 ]  На страницу Пред.  1, 2, 3, 4, 5  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group