2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 12:14 


05/09/16
12058
selesta в сообщении #1251136 писал(а):
Однако и в приведенном Вами примере имеем:
$a^3+b^3=9^3+12^3=2457=9\cdot 273=3^3(6\cdot15+1)$
$P=3, k=15$

Ок, подставляем их в ваше
selesta в сообщении #1251114 писал(а):
Если двучлен $(a^3+b^3)$ делится на $9$, т. е. $(a^3+b^3)=3^2P$, то:
$(a^3+b^3)=3(a+b)(6k+1)=3\cdot3^2(6k+1)P=3^3(6k+1)P$ (8)

Получаем
Если двучлен $(9^3+12^3)$ делится на $9$, т. е. $(9^3+12^3)=3^2\cdot 3$, то:
$(9^3+12^3)=3(9+12)(6\cdot 15+1)=3\cdot3^2(6\cdot 15+1)\cdot 3=3^3(6\cdot15+1)\cdot 3$ (8)
Вы же видите, что в цепочке равенств что-то не так?
$9^3+12^3=2457$
$3\cdot (9+12)\cdot (6\cdot 15+1)=5733$
$3\cdot3^2\cdot (6\cdot 15+1)\cdot 3=7371$
$3^3\cdot (6\cdot15+1)\cdot 3=7371$

 Профиль  
                  
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 12:22 
Аватара пользователя


26/09/16
198
Снегири
selesta в сообщении #1251114 писал(а):
Что касается неравенства (4):
$(a+b)(6k+1)\ne c(6m+1)$,то:
$(a+b)\ne c$
$(6k+1)\ne(6m+1)$


Погодите-погодите. Это в общем случае? Это "Если так, то так и так"?
Потому что я беру, например, $a = 3, b = 4, k = 8, c = 49, m = 1$ и получаю:
$(3+4)(6 \cdot 8+1) = 49 \cdot (6 \cdot 1 + 1)$, что верно: $343 = 343$. Но однозначно $(3+4) \ne (49)$ и $(6 \cdot 8+1) \ne ((6 \cdot 1 + 1))$
Обратно, $(3+4)(6 \cdot 8+1) \ne 7 \cdot (6 \cdot 1 + 1)$, но $(3+4) = 7$.
Что-то тут не так.

selesta в сообщении #1250921 писал(а):
$c^3=c(6m+1)$ (3)
Очевидно, что правые части уравнений (2) и (3) не равны между собой:
$(a+b)(6k+1)\ne c(6m+1)$ (4)

selesta в сообщении #1251114 писал(а):
Между формулами (3) и (4) ничего очевидного нет.

Что-то тут не так.

Someone в сообщении #1250974 писал(а):
У него, вроде бы, явно это не сказано.

Чуть позже:
selesta в сообщении #1250931 писал(а):
Поскольку числа $(a+b)$ и $c$
делятся на число $3$ только в первой степени, то

Вполне однозначно :)

Очевидно, автор продвигает доказательство для случая "$c$ кратно трём, но не кратно девяти", что, конечно, небесполезно, но хотя нет, всё-таки бесполезно.

 Профиль  
                  
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 12:37 


25/09/17

34
wrest в сообщении #1251158 писал(а):
selesta в сообщении #1251136 писал(а):
Однако и в приведенном Вами примере имеем:
$a^3+b^3=9^3+12^3=2457=9\cdot 273=3^3(6\cdot15+1)$
$P=3, k=15$

Ок, подставляем их в ваше
selesta в сообщении #1251114 писал(а):
Если двучлен $(a^3+b^3)$ делится на $9$, т. е. $(a^3+b^3)=3^2P$, то:
$(a^3+b^3)=3(a+b)(6k+1)=3\cdot3^2(6k+1)P=3^3(6k+1)P$ (8)

Получаем
Если двучлен $(9^3+12^3)$ делится на $9$, т. е. $(9^3+12^3)=3^2\cdot 3$, то:
$(9^3+12^3)=3(9+12)(6\cdot 15+1)=3\cdot3^2(6\cdot 15+1)\cdot 3=3^3(6\cdot15+1)\cdot 3$ (8)
Вы же видите, что в цепочке равенств что-то не так?
$9^3+12^3=2457$
$3(9+12)(6\cdot 15+1)=5733$
$3\cdot3^2(6\cdot 15+1)\cdot 3=7371$
$3^3(6\cdot15+1)\cdot 3=7371$


Все так как надо.
$a+b=9+12=21$
$9^3+12^3=2457=3^221(6\cdot2+1)=3^3(6\cdot15+1)$

Все зависит от степени преобразования двучлена $(9^3+12^3)$.

Ваши три последние примера не являются результатом преобразования двучлена $(9^3+12^3)$, а произвольной компиляцией двучлена $(a+b)$ и возможных при разных степенях его преобразования значений чисел $k, P$.

 Профиль  
                  
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 12:50 


05/09/16
12058
selesta в сообщении #1251168 писал(а):
Все так как надо.
$a+b=9+12=21$
$9^3+12^3=2457=3^221(6\cdot2+1)=3^3(6\cdot15+1)$
Все зависит от степени преобразования двучлена $(9^3+12^3)$.

Так чему $k$ равно для 9 и 12? В одном месте оно у вас равно 2, в другом 15. А $P$? В одном месте 273, в другом 3, тут рыбу заворачивали...
Надо вот тут переписать вам что-то:
selesta в сообщении #1251114 писал(а):
Если двучлен $(a^3+b^3)$ делится на $9$, т. е. $(a^3+b^3)=3^2P$, то:
$(a^3+b^3)=3(a+b)(6k+1)=3\cdot3^2(6k+1)P=3^3(6k+1)P$ (8)

Ибо эта ваша (8) попросту неверна, если одинаковыми буквами вы обозначаете одинаковые числа.

 Профиль  
                  
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 13:11 


25/09/17

34
wrest в сообщении #1251176 писал(а):
selesta в сообщении #1251168 писал(а):
Все так как надо.
$a+b=9+12=21$
$9^3+12^3=2457=3^221(6\cdot2+1)=3^3(6\cdot15+1)$
Все зависит от степени преобразования двучлена $(9^3+12^3)$.

Так чему $k$ равно для 9 и 12? В одном месте оно у вас равно 2, в другом 15. А $P$? В одном месте 273, в другом 3, тут рыбу заворачивали...
Надо вот тут переписать вам что-то:
selesta в сообщении #1251114 писал(а):
Если двучлен $(a^3+b^3)$ делится на $9$, т. е. $(a^3+b^3)=3^2P$, то:
$(a^3+b^3)=3(a+b)(6k+1)=3\cdot3^2(6k+1)P=3^3(6k+1)P$ (8)

Ибо эта ваша (8) попросту неверна, если одинаковыми буквами вы обозначаете одинаковые числа.


Формула (8) верна.
Значение указанных в формуле величин $k, P$ зависит от степени возможного преобразования двучлена $a^3+b^3$. Это видно на примере:
$9^3+12^3=2457=3^221(6\cdot2+1)=3^3(6\cdot15+1)$
В зависимости от значения чисел $a, b$ значения чисел $k, P$ могут иметь единственное значение или несколько значений.

-- 27.09.2017, 14:20 --

Уважаемый SVD-d,
значения чисел $k, m $ в формулах (2) и (3) зависят от значения чисел $a, b, c$, а не наоборот. Нельзя задаться числами $k, m $ и получить значения чисел $a, b, c$ по формулам (2) и (3).

 Профиль  
                  
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 13:30 


05/09/16
12058
selesta в сообщении #1251180 писал(а):
В зависимости от значения чисел $a, b$ значения чисел $k, P$ могут иметь единственное значение или несколько значений.

Как это несколько? У вас в одной формуле одна и та же буква обозначает одно и то же число или может обозначать разные? Поясню. Допустим, мы пишем формулу $a+k+1=a+k-1$ и поясняем, что она верна, поскольку в зависимости от $a$, обозначенное буквой $k$ число в правой части равенства может быть не равно тому $k$, что слева. Так, что ли? :facepalm:

 Профиль  
                  
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 13:39 


25/09/17

34
wrest в сообщении #1251183 писал(а):
selesta в сообщении #1251180 писал(а):
В зависимости от значения чисел $a, b$ значения чисел $k, P$ могут иметь единственное значение или несколько значений.

Как это несколько? У вас в одной формуле одна и та же буква обозначает одно и то же число или может обозначать разные? Поясню. Допустим, мы пишем формулу $a+k+1=a+k-1$ и поясняем, что она верна, поскольку в зависимости от $a$, обозначенное буквой $k$ число в правой части равенства может быть не равно тому $k$, что слева. Так, что ли? :facepalm:


В моей формуле (8) буквами $k, P$ обозначены числа, имеющие разные значения, зависящие от значения чисел $a, b, c$.

 Профиль  
                  
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 14:16 
Аватара пользователя


15/09/13
390
г. Ставрополь
selesta в сообщении #1250921 писал(а):
Для третьей степени уравнение ВТФ запишем следующим образом:
$a^3+b^3=c^3$ (1)
Здесь: $a, b$ – заданные взаимно простые натуральные числа разной четности; $c$ – искомое нечетное натуральное число.
Возможны два типа уравнения (1).

selesta
Можете показать анологично тип(ы) уравнения(й), когда $a$ и $b$ нечетные, а искомое $c$ - четное (для тех, кто не знает)?

А затем (может быть) уже перейти к обсуждению правомерности использования несуществующего свойства в качестве основного аргумента его же (свойства) несуществования.

-- 27.09.2017, 14:41 --

wrest.
Вы наносите «удары ниже пояса» (странно, что Вас никто не остановил).
Вы можете использовать взамен буквенных обозначений $a,b,c$ в контрпримерах только те из чисел натурального ряда, которые удовлетворяют уравнению $a^3+b^3=c^3$ (ИМХО).

 Профиль  
                  
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 14:59 


05/09/16
12058
vxv в сообщении #1251194 писал(а):
Вы можете использовать взамен буквенных обозначений $a,b,c$ в контрпримерах только те из чисел натурального ряда, которые удовлетворяют уравнению $a^3+b^3=c^3$ (ИМХО).

Мы же еще от Эйлера знаем, что таких чисел не существует.
Я уже говорил, что тут у ТС (и теперь у вас) получается такой подход: "Пусть существует решение $a^3+b^3=c^3$, дальше какая-то пурга вместо доказательства что решения не существует, а кто с пургой не согласен пусть приведет такие $a,b,c$ что $a^3+b^3=c^3$" :mrgreen:

 Профиль  
                  
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 15:06 
Аватара пользователя


26/09/16
198
Снегири
Коль скоро ТС пишет общие преобразования, которые не относятся исключительно к БТФ3, контрпримером для них может служить всё что угодно. Так, преобразование $a^3 + b^3 = (a+b)^3 - 3ab(a+b)$ работает независимо от того, является ли их сумма кубом (и даже от того являются ли приведённые числа рациональными).

 Профиль  
                  
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 22:23 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
selesta в сообщении #1251128 писал(а):
Someone в сообщении #1250974 писал(а):
SVD-d в сообщении #1250943 писал(а):
но не кратны девяти
У него, вроде бы, явно это не сказано. Получается неоднозначная интерпретация. Но, вообще-то, нетрудно выяснить, на какую точно степень тройки делится $a+b$, если $c$ делится на заданную степень тройки и не делится на бо́льшую.


Если двучлен $(a+b)$ кратный $3^z$, то число $c$, определяемое по формуле теоремы Ферма, кратно числу $3$ в степени$ \sqrt[3]{z+1}$.
Если число $c$ кратно числу $3$ в степени $z$, то двучлен $(a+b)$ кратный числу $3$ в степени $(z-1)$.
Это неверно. Я предполагаю, что Ваши слова "число кратно $3^z$" означают, что это число делится на $3^z$ и не делится на $3^{z+1}$, поскольку без этого уточнения можно получить любые степени. Кроме того, я имею в виду Ваши слова
vxv в сообщении #1251194 писал(а):
можете использовать взамен буквенных обозначений $a,b,c$ в контрпримерах только те из чисел натурального ряда, которые удовлетворяют уравнению $a^3+b^3=c^3$
Если мы предполагаем, что числа $a,b,c$ попарно взаимно просты и удовлетворяют этому равенству, то степени получаются совершенно не такие, как Вы написали.

-- Ср сен 27, 2017 23:14:23 --

selesta в сообщении #1251136 писал(а):
Формулы получены из простых соотношений.
Любое нечетное число, не кратное $3$, в квадрате равно:
$N=(6n+1)$
Отсюда:
любое нечетное число, не кратное $3$, в нечетной степени равно:
$N^n=N^{n-2}(6n+1)$
Например, $5^3=5^{3-2}\cdot(6\cdot 3+1)$? Верно?

selesta в сообщении #1251136 писал(а):
любое нечетное число, кратное $3$, в нечетной степени равно:
$(3N)^n=3^nN^{n-2}(6n+1)$
Например, $(3\cdot 5)^3=3^3\cdot 5^{3-2}\cdot(6\cdot 3+1)$? Верно?

В обоих случаях $N=5$, $n=3$.

 Профиль  
                  
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение28.09.2017, 10:08 


25/09/17

34
Уважаемый Someone,

цитата из Вашего сообщения:
Цитата:
Я предполагаю, что Ваши слова "число кратно $3^z$" означают, что это число делится на $3^z$ и не делится на $3^{z+1}$, поскольку без этого уточнения можно получить любые степени.

Уточняю: мои слова в сообщении #1250974 означают, что двучлен $(a+b)$ или число $c$ делятся на $3^z$ и не делятся на $3^{z+1}$.
Если я не ошибаюсь, число $3$, вернее, кратность двучлена $(a+b)$ и, соответственно, числа $c$ числу $3$ играет особую роль. Их кратность любому другому числу не играет никакой роли.
Я давно разработал доказательство ВТФ для любых нечетных и четных показателей степени, кроме степени $2^s$, где $s>1$, но правила форума не позволяют разместить его на форуме.
В этом доказательстве число $3$, вернее, кратность двучлена $(a+b)$ и, соответственно, числа $c$ числу $3$ играет особую роль.

-- 28.09.2017, 11:27 --

vxv в сообщении #1251194 писал(а):
selesta в сообщении #1250921 писал(а):
Для третьей степени уравнение ВТФ запишем следующим образом:
$a^3+b^3=c^3$ (1)
Здесь: $a, b$ – заданные взаимно простые натуральные числа разной четности; $c$ – искомое нечетное натуральное число.
Возможны два типа уравнения (1).

selesta
Можете показать аналогично тип(ы) уравнения(й), когда $a$ и $b$ нечетные, а искомое $c$ - четное (для тех, кто не знает)?
А затем (может быть) уже перейти к обсуждению правомерности использования несуществующего свойства в качестве основного аргумента его же (свойства) несуществования.


Показываю:

$a=11, b=13$
$a+b=11+13=24$
$(a+b)$ кратно $3$.
Имеем:
$11^3+13^3=3528=3\cdot24(6\cdot8+1)$

$a=11, b=15$
$a+b=11+15=26$
$(a+b)$ не кратно $3$.
Имеем:
$11^3+15^3=4706=26(6\cdot30+1)$

 Профиль  
                  
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение28.09.2017, 14:55 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
selesta в сообщении #1251417 писал(а):
Я давно разработал доказательство ВТФ для любых нечетных и четных показателей степени, кроме степени $2^s$, где $s>1$, но правила форума не позволяют разместить его на форуме.
В этом доказательстве число $3$, вернее, кратность двучлена $(a+b)$ и, соответственно, числа $c$ числу $3$ играет особую роль.
В данный момент никакие степени, кроме третьей, трогать не надо. Сначала покажите правильное доказательство для третьей степени. Своё, естественно, а не списанное с книжки. Делимость на $3$ важна только для третьей степени.

Напоминаю:
Someone в сообщении #1251339 писал(а):
selesta в сообщении #1251128 писал(а):
Если двучлен $(a+b)$ кратный $3^z$, то число $c$, определяемое по формуле теоремы Ферма, кратно числу $3$ в степени$ \sqrt[3]{z+1}$.
Если число $c$ кратно числу $3$ в степени $z$, то двучлен $(a+b)$ кратный числу $3$ в степени $(z-1)$.
Это неверно.

Если мы предполагаем, что числа $a,b,c$ попарно взаимно просты и удовлетворяют этому равенству, то степени получаются совершенно не такие, как Вы написали.

selesta в сообщении #1251136 писал(а):
любое нечетное число, не кратное $3$, в нечетной степени равно:
$N^n=N^{n-2}(6n+1)$
Например, $5^3=5^{3-2}\cdot(6\cdot 3+1)$? Верно?

selesta в сообщении #1251136 писал(а):
любое нечетное число, кратное $3$, в нечетной степени равно:
$(3N)^n=3^nN^{n-2}(6n+1)$
Например, $(3\cdot 5)^3=3^3\cdot 5^{3-2}\cdot(6\cdot 3+1)$? Верно?

В обоих случаях $N=5$, $n=3$.
Я жду ваших объяснений по поводу указанных ошибок.

 Профиль  
                  
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение28.09.2017, 16:16 


25/09/17

34
Уважаемый Someone,
я приношу извинения, я допустил технические ошибки в следующем сообщении:

"Формулы получены из простых соотношений.
Любое нечетное число, не кратное $3$, в квадрате равно:
$N=(6n+1)$ (1)
Отсюда:
любое нечетное число, не кратное $3$, в нечетной степени равно:
$N^n=N^{n-2}(6n+1)$ (2)
любое нечетное число, кратное $3$, в нечетной степени равно:
$(3N)^n=3^nN^{n-2}(6n+1)$ (3)"

Поясняю: в формуле (1) число $n$ не показатель степени, а получаемое при преобразовании число.

Должно быть так:
Формулы (1), (2) и (3) должны иметь вид:
$N^2=(6k+1)$ (1)
$N^n=N^{n-2}(6k+1)$ (2)
$(3N)^n=3^nN^{n-2}(6k+1)$ (3)
В этих формулах число $k$ - это число, которое получается при преобразовании числа $N^2$ в соответствии с формулой (1).
Лень было набирать каждую формулу отдельно. Копировал формулу (1), а потом дополнял, забывая делать соответствующие исправления.

 Профиль  
                  
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение28.09.2017, 22:53 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
selesta в сообщении #1251505 писал(а):
я допустил технические ошибки
С кем не бывает… Но это мелочи.

А вот со степенями $3^z$, делящими числа $c$ и $a+b$, у Вас всё очень плохо. Если Вы на такой основе будете пытаться что-то доказать, то у Вас ничего, кроме ерунды, не получится. Однако Вы это пытаетесь игнорировать.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 46 ]  На страницу Пред.  1, 2, 3, 4  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Google [Bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group