2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4  След.
 
 Доказательство ВТФ n=3 (вариант)
Сообщение26.09.2017, 14:33 
Доказательство великой теоремы Ферма
Третья степень (вариант)


Для третьей степени уравнение ВТФ запишем следующим образом:
$a^3+b^3=c^3$ (1)
Здесь: $a, b$ – заданные взаимно простые натуральные числа разной четности; $c$ – искомое нечетное натуральное число.
Возможны два типа уравнения (1).
Первый тип: двучлен $(a+b)$ и, следовательно, число $c$ не кратны показателю степени. В этом случае двучлен $a^3+b^3$ преобразуется следующим образом:
$a^3+b^3=(a+b)(6k+1)$ (2)
Если число $c$ натуральное, то число $c^3$ преобразуется следующим образом:
$c^3=c(6m+1)$ (3)
Очевидно, что правые части уравнений (2) и (3) не равны между собой:
$(a+b)(6k+1)\ne c(6m+1)$ (4)
Следовательно, тип уравнения (1), в котором двучлен $(a+b)$ и, следовательно, число $c$ не кратны показателю степени, не имеет решения в натуральных числах.
Второй тип: двучлен $(a+b)$ и, следовательно, число $c$ кратны показателю степени в первой степени. В этом случае двучлен $(a^3+b^3)$ преобразуется следующим образом:
$a^3+b^3=3(a+b)(6p+1)$ (5)
Если число $c$ натуральное, то число $c^3$ преобразуется следующим образом:
$c^3=3^2c(6q+1)$ (6)
Очевидно, что правые части уравнений (5) и (6) не равны между собой:
$3(a+b)(6p+1)\ne 3^2c(6q+1)$ (7)
Следовательно, и второй тип уравнения (1), в котором двучлен $(a+b)$ и, следовательно, число $c$ кратны показателю степени в первой степени, не имеет решения в натуральных числах.
Таким образом, уравнение Великой теоремы Ферма третьей степени не имеет решения в натуральных числах.

 
 
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение26.09.2017, 14:40 
Аватара пользователя
selesta в сообщении #1250921 писал(а):
Очевидно, что правые части уравнений (2) и (3) не равны между собой:


Правда, очевидно?

 
 
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение26.09.2017, 15:00 
SVD-d в сообщении #1250922 писал(а):
selesta в сообщении #1250921 писал(а):
Очевидно, что правые части уравнений (2) и (3) не равны между собой:


Правда, очевидно?

Несомненно, особенно в отношении формулы (7). Поскольку числа $(a+b)$ и $c$
делятся на число $3$ только в первой степени, то с учетом этого правая часть формулы (7) делится на $3^3$, а левая ее часть делится только на $3^2$.
Да и двучлены у них разные.

 
 
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение26.09.2017, 15:17 
selesta в сообщении #1250921 писал(а):
Второй тип: двучлен $(a+b)$ и, следовательно, число $c$ кратны показателю степени в первой степени.

То есть $c$, кратные 9 ни в первый ни во второй тип не попадают?

 
 
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение26.09.2017, 15:44 
Аватара пользователя
selesta в сообщении #1250931 писал(а):
Несомненно, особенно в отношении формулы (7).


Насчёт формулы 7 я и не сомневаюсь. Распишите, пожалуйста, вот это "очевидно" между 3 и 4 поподробнее.

 
 
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение26.09.2017, 16:00 
Аватара пользователя
SVD-d в сообщении #1250937 писал(а):
Насчёт формулы 7 я и не сомневаюсь.
А почему, собственно говоря?

 
 
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение26.09.2017, 16:29 
Аватара пользователя
Someone в сообщении #1250939 писал(а):
А почему, собственно говоря?


Потому что по условию $(a+b)$ и $c$ кратны трём, но не кратны девяти. Учитывая, что $(6 n + 1)$ не кратно трём, формула (7), очевидно, верна, откуда бы автор её ни получил.

 
 
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение26.09.2017, 18:59 
Аватара пользователя
SVD-d в сообщении #1250943 писал(а):
но не кратны девяти
У него, вроде бы, явно это не сказано. Получается неоднозначная интерпретация. Но, вообще-то, нетрудно выяснить, на какую точно степень тройки делится $a+b$, если $c$ делится на заданную степень тройки и не делится на бо́льшую.

 
 
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 09:53 
wrest в сообщении #1250934 писал(а):
selesta в сообщении #1250921 писал(а):
Второй тип: двучлен $(a+b)$ и, следовательно, число $c$ кратны показателю степени в первой степени.

То есть $c$, кратные 9 ни в первый ни во второй тип не попадают?


Формулу (1) запишем следующим образом:
$c^3=a^3+b^3= (a+b)D$
Из нее следует, что если двучлен $(a+b)$ делится на $3$, то и число $c$ должно делиться на $3$.
Если двучлен $(a^3+b^3)$ делится на $9$, т. е. $(a^3+b^3)=3^2P$, то:
$(a^3+b^3)=3(a+b)(6k+1)=3\cdot3^2(6k+1)P=3^3(6k+1)P$ (8)
Если число $c$ кратно $9$, то:
$c^3=3^4c(6m+1)$ (9)
Из формул (8) и (9) следует:
$3^3(6k+1)P\ne3^4c(6m+1)$

-- 27.09.2017, 11:12 --

SVD-d в сообщении #1250937 писал(а):
selesta в сообщении #1250931 писал(а):
Несомненно, особенно в отношении формулы (7).


Насчёт формулы 7 я и не сомневаюсь. Распишите, пожалуйста, вот это "очевидно" между 3 и 4 поподробнее.

У меня в доказательстве написано: "Очевидно, что правые части уравнений (2) и (3) не равны между собой".
Между формулами (3) и (4) ничего очевидного нет.
Что касается неравенства (4):
$(a+b)(6k+1)\ne c(6m+1)$,то:
$(a+b)\ne c$
$(6k+1)\ne(6m+1)$
Кстати: чтобы получить число $c$ делением двучлена $(a+b)$, если такое деление возможно, то его надо делить на двучлен $(6r+1)$, что невозможно с учетом соотношений между числами $a, b, c$ в уравнении теоремы Ферма.

 
 
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 10:38 
Аватара пользователя
selesta в сообщении #1251114 писал(а):
$(a+b)(6k+1)\ne c(6m+1)$,то:
$(a+b)\ne c$
$(6k+1)\ne(6m+1)$
Кстати: чтобы получить число $c$ делением двучлена $(a+b)$, если такое деление возможно, то его надо делить на двучлен $(6r+1)$, что невозможно с учетом соотношений между числами $a, b, c$ в уравнении теоремы Ферма.
Не доказано.

 
 
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 10:46 
Someone в сообщении #1250974 писал(а):
SVD-d в сообщении #1250943 писал(а):
но не кратны девяти
У него, вроде бы, явно это не сказано. Получается неоднозначная интерпретация. Но, вообще-то, нетрудно выяснить, на какую точно степень тройки делится $a+b$, если $c$ делится на заданную степень тройки и не делится на бо́льшую.


Если двучлен $(a+b)$ кратный $3^z$, то число $c$, определяемое по формуле теоремы Ферма, кратно числу $3$ в степени$ \sqrt[3]{z+1}$.
Если число $c$ кратно числу $3$ в степени $z$, то двучлен $(a+b)$ кратный числу $3$ в степени $(z-1)$.

-- 27.09.2017, 11:59 --

Someone в сообщении #1251125 писал(а):
selesta в сообщении #1251114 писал(а):
$(a+b)(6k+1)\ne c(6m+1)$,то:
$(a+b)\ne c$
$(6k+1)\ne(6m+1)$
Кстати: чтобы получить число $c$ делением двучлена $(a+b)$, если такое деление возможно, то его надо делить на двучлен $(6r+1)$, что невозможно с учетом соотношений между числами $a, b, c$ в уравнении теоремы Ферма.
Не доказано.

$a<c$
$b<c$
Сложим:
$(a+b)<2c$
Отсюда:
$0,5(a+b)<c$
Кроме того:
$c<(a+b)$
Значения числа $c$ находятся в пределах:
$0,5(a+b)<c<(a+b)$
В указанных пределах нет целого числа большего $1$, на которое можно было бы разделить число $(a+b)$, чтобы получить число $c$.
Тем более, его невозможно разделить на число $(6r+1)$

 
 
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 11:06 
selesta в сообщении #1251114 писал(а):
Если двучлен $(a^3+b^3)$ делится на $9$, т. е. $(a^3+b^3)=3^2P$, то:
$(a^3+b^3)=3(a+b)(6k+1)=3\cdot3^2(6k+1)P=3^3(6k+1)P$ (8)

Ок, положим $a=9,b=12$, тогда $a^3+b^3=9^3+12^3=2457=9\cdot 273$
Чему тогда равны $k$ и $P$ в (8)?

 
 
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 11:14 
SVD-d в сообщении #1250943 писал(а):
Someone в сообщении #1250939 писал(а):
А почему, собственно говоря?


Потому что по условию $(a+b)$ и $c$ кратны трём, но не кратны девяти. Учитывая, что $(6 n + 1)$ не кратно трём, формула (7), очевидно, верна, откуда бы автор её ни получил.


Формулы получены из простых соотношений.
Любое нечетное число, не кратное $3$, в квадрате равно:
$N=(6n+1)$
Отсюда:
любое нечетное число, не кратное $3$, в нечетной степени равно:
$N^n=N^{n-2}(6n+1)$
любое нечетное число, кратное $3$, в нечетной степени равно:
$(3N)^n=3^nN^{n-2}(6n+1)$

-- 27.09.2017, 12:25 --

wrest в сообщении #1251134 писал(а):
selesta в сообщении #1251114 писал(а):
Если двучлен $(a^3+b^3)$ делится на $9$, т. е. $(a^3+b^3)=3^2P$, то:
$(a^3+b^3)=3(a+b)(6k+1)=3\cdot3^2(6k+1)P=3^3(6k+1)P$ (8)

Ок, положим $a=9,b=12$, тогда $a^3+b^3=9^3+12^3=2457=9\cdot 273$
Чему тогда равны $k$ и $P$ в (8)?


Я уже Вам разъяснял: в формуле теоремы Ферма числа $a, b, c$ должны быть взаимно простыми.
Однако и в приведенном Вами примере имеем:
$a^3+b^3=9^3+12^3=2457=9\cdot 273=3^3(6\cdot15+1)$
$P=3, k=15$

 
 
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 11:54 
selesta в сообщении #1251136 писал(а):
Я уже Вам разъяснял: в формуле теоремы Ферма числа $a, b, c$ должны быть взаимно простыми.

Да не вопрос, пусть $a=11, b=13$

 
 
 
 Re: Доказательство ВТФ n=3 (вариант)
Сообщение27.09.2017, 12:11 
wrest в сообщении #1251150 писал(а):
selesta в сообщении #1251136 писал(а):
Я уже Вам разъяснял: в формуле теоремы Ферма числа $a, b, c$ должны быть взаимно простыми.

Да не вопрос, пусть $a=11, b=13$

Тоже не вопрос.
Пусть будет и так.
$a+b=11+13=24$
$(a+b)$ кратно $3$.
Имеем:
$11^3+13^3=3528=3\cdot24(6\cdot8+1)$

 
 
 [ Сообщений: 46 ]  На страницу 1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group