Пусть у нас имеется абсолютно гладкий стол, на котором расположены две вертикальные стенки под острым углом
![$\alpha$ $\alpha$](https://dxdy-01.korotkov.co.uk/f/c/7/4/c745b9b57c145ec5577b82542b2df54682.png)
друг к другу.
Вдоль одной из стенок вплотную к ней запускают шарик так, что он сталкивается абсолютно упруго с данной конструкцией. Для определенности будем считать, что деформации при ударе очень малы, и подчиняются закону Гука.
Опеределить, под каким углом будет отскок.
Задача двумерная. Трениями и вращениями пренебречь.
![Изображение](http://www.usa1847usa.com/physics/pictures/olymp2.jpg)
Очевидно, что если шарик катится в угол не вдоль стенки, то задача сводится к чисто геометрической.
Но в данном случае считам, что удар фактически происходит "одновременно" с обеими стенками.
Понятно, что чисто физически задачка не совсем корректна.
Но, тем не менее, будем считать, что все происходит идеальным образом. То есть изначально шарик катится вплотную к одной стенке без малейших зазоров.
Если надо, пусть для определенности заданы начальная скорость шарика
![$V$ $V$](https://dxdy-03.korotkov.co.uk/f/a/9/a/a9a3a4a202d80326bda413b5562d5cd182.png)
, масса
![$m$ $m$](https://dxdy-01.korotkov.co.uk/f/0/e/5/0e51a2dede42189d77627c4d742822c382.png)
, к-т упругости стенок
![$k$ $k$](https://dxdy-03.korotkov.co.uk/f/6/3/b/63bb9849783d01d91403bc9a5fea12a282.png)
и радиус шарика
![$r$ $r$](https://dxdy-01.korotkov.co.uk/f/8/9/f/89f2e0d2d24bcf44db73aab8fc03252c82.png)
. Шарик считать абсолютно твердым несжимаемым.
Хотя, скорее всего они не нужны. Можно считать, что
![$k$ $k$](https://dxdy-03.korotkov.co.uk/f/6/3/b/63bb9849783d01d91403bc9a5fea12a282.png)
очень велико, а
![$m$ $m$](https://dxdy-01.korotkov.co.uk/f/0/e/5/0e51a2dede42189d77627c4d742822c382.png)
и
![$V$ $V$](https://dxdy-03.korotkov.co.uk/f/a/9/a/a9a3a4a202d80326bda413b5562d5cd182.png)
достаточно малы. То есть деформации малы и удар почти мгновенный.
Кажется, все условия прописал.
Задачка навеяна темой соседнего подфорума ПРР
topic120120.htmlСам я ее до конца не решил.
Кажется есть определенные тонкости для некоторых диапазонов угла.