Дело в том, что в представленной системе координат уравнения движения ЦМ шарика внутри красного ромба представляют обычные гармонические осцилляции:
То есть круговые частоты по обеим осям получаются:
Для простых фигур Лиссажу надо, чтобы отношение
было целым числом.
То есть
Соответственно при нечетном
у нас шарик одновременно достигает максимума отклонения по обеим осям и обратно идет по той же траектории, в конце концов вылетая из угла по той же стороне, по которой прилетел.
При четном
у нас максимуму отклонения по оси
соответствует нулевое отклонение по
и получается полноценная Лисажу. Шарик выскочит из угла по другой стороне.
В любом случае ЦТ проходит через начало координат, а значит арик отрывается от обеих стенок одновременно.
Если же соотношение частот не целое, то ЦМ шарика не проходит через начало координат и соответственно отрыв от стенок будет не одновременным. Возможны даже варианты, когда шарик оторвется от одной стенки, а затем после отрыва от другой стенки опять столкнется с первой стенкой. И при достаточно острых углах число таких столкновений может быть большим. Это уже чисто геометрическая задача, которая может решаться с помощью многократной развертки нашего изначального угла.