2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3  След.
 
 Закон сохранения энергии
Сообщение27.03.2017, 18:01 
Аватара пользователя


26/11/14
773
Доброго всем времени суток. Уважаемые, помогите разобраться. На примере задачи: В покоящуюся тележку с песком общей массой $M$ попадает пуля массой $m$, летящая со скоростью $v$ и застревает в песке, после чего тележка начинает двигаться со скоростью $u$. Найти энергию, которая перешла в тепло? (Задачу взял из головы, может что и не так).
Из ЗСИ: $mv = (m+M)u $ ,
из ЗСЭ: $\frac{mv^2}{2}=\frac{(m+M)u^2}{2}+Q$ , откуда: $Q=\frac{mM}{m+M} \frac{v^2}{2}$ .

Возникли, наверное, дурацкие вопросы:
1) если правильно понимаю, при неупругом ударе потери на тепло будут всегда? А как это объясняется в терминах физики?
2) если рассматриваем абсолютно упругий удар двух бильярдных шаров, то потребовав отсутствия потерь $Q=0$ , из системы:
$$\left\{
\begin{array}{rcl}
 \frac{m_1 u^2}{2}= \frac{m_1 v_1^2}{2} +  \frac{m_2 v_2^2}{2} + Q\\
 m_1 u = m_1 v_1 + m_2 v_2 \\
\end{array}
\right.$$ получу решение либо: $v_1 = u, \, v_2=0 $ , либо: $v_1 = 0, \, v_2=u $ , т.е. движущийся шар после удара остановится, а другой начнет движение со скоростью первого шара.
Верно ли отсюда сделать вывод, что если после соударения движутся оба шара, значит не обошлось без потери энергии в тепло? Как можно объяснить в терминах физики связь потери энергии и движение обоих шаров?

 Профиль  
                  
 
 Re: Закон сохранения энергии
Сообщение27.03.2017, 18:22 
Заморожен


16/09/15
946
1)Да.Энергия замкнутой системы сохраняется в любом случае.
2)Так будет только, если $m_1=m_2$.

 Профиль  
                  
 
 Re: Закон сохранения энергии
Сообщение27.03.2017, 18:24 
Заслуженный участник


16/02/13
4214
Владивосток
Не замутить ли и мне модный в последнее время опрос на тему «А не векторная ли это величина — скорость» с вариантами ответа «Да» и «Разумеется»...

-- 28.03.2017, 01:25 --

Кстати говоря, и кинетическая энергия у вас неправильно записана.

 Профиль  
                  
 
 Re: Закон сохранения энергии
Сообщение27.03.2017, 18:27 
Заслуженный участник


27/04/09
28128
Stensen в сообщении #1204012 писал(а):
А как это объясняется в терминах физики?
Тут, скорее, «в терминах определения». Мы можем определить абсолютно упругий удар именно как такой, при котором потерь механической энергии нет (и, соответственно, неупругий как такой, при котором есть), и тогда всё тавтологично, или мы можем определить а. у. иначе, но что-то не помню, как ещё можно.

 Профиль  
                  
 
 Re: Закон сохранения энергии
Сообщение27.03.2017, 19:29 
Аватара пользователя


26/11/14
773
Erleker в сообщении #1204015 писал(а):
2)Так будет только, если $m_1=m_2$.
Да, поторопился.

iifat в сообщении #1204016 писал(а):
Не замутить ли и мне модный в последнее время опрос на тему «А не векторная ли это величина — скорость» с вариантами ответа «Да» и «Разумеется»...
Виноват, не написал вначале, для упрощения считаю удары центральными.

iifat в сообщении #1204016 писал(а):
Кстати говоря, и кинетическая энергия у вас неправильно записана.
А где не правильно?

Собственно вопрос вызван вот чем. Смущает, что одинаковые параметры: $u, \,  v_1, \,  v_2$ удовлетворяют двум разным уравнениям системы:
$$\left\{
\begin{array}{rcl}
 m_1 u^2= m_1 v_1^2 + m_2 v_2^2 \\
 m_1 u = m_1 v_1 + m_2 v_2 \\
\end{array}
\right.$$ или я чего-то не понимаю?

 Профиль  
                  
 
 Re: Закон сохранения энергии
Сообщение28.03.2017, 01:22 
Заслуженный участник


16/02/13
4214
Владивосток
Stensen в сообщении #1204051 писал(а):
А где не правильно?
Для центрального — правильно. Хотя видел я по телевизору бильярд — играют в него явно не материальными точками.
Stensen в сообщении #1204051 писал(а):
Смущает
Два уравнения с двумя неизвестными. Конкретнее, что вас смущает-то?

 Профиль  
                  
 
 Re: Закон сохранения энергии
Сообщение28.03.2017, 04:28 
Заслуженный участник


28/12/12
7962
Stensen в сообщении #1204051 писал(а):
Смущает, что одинаковые параметры: $u, \,  v_1, \,  v_2$ удовлетворяют двум разным уравнениям системы:

Так решение системы уравнений именно этим свойством и обладает.
Кстати, у этой системы два решения - знаете второе?

 Профиль  
                  
 
 Re: Закон сохранения энергии
Сообщение28.03.2017, 05:02 


12/07/15
28/01/25
3384
г. Чехов
Stensen в сообщении #1204012 писал(а):
при неупругом ударе потери на тепло будут всегда? А как это объясняется в терминах физики?

Надо понимать, что реальный процесс столкновения (удара) шаров - это процесс, занимающий некоторое короткое время $\Delta t$, шары при столкновении так или иначе деформируются и затем в той или иной степени восстанавливают форму. Если шары пластичные, то будут потери энергии $Q>0$; если шары упругие (как пружина), то потерями можно пренебречь $Q=0$.
В случае рассмотрения законов сохранения нет необходимости рассматривать, что происходит с шарами непосредственно в момент столкновения, рассматривают момент до столкновения и момент после столкновения. Энергия и импульс системы должны сохраниться, есть только нюанс с потерями $Q$.
Таким образом $Q$ характеризует способность материала шаров поглощать кинетическую энергию в результате удара и в конечном итоге уходит в нагрев.
Так понятнее?

 Профиль  
                  
 
 Re: Закон сохранения энергии
Сообщение28.03.2017, 08:39 
Заслуженный участник
Аватара пользователя


11/03/08
10070
Москва
iifat в сообщении #1204016 писал(а):
Не замутить ли и мне модный в последнее время опрос на тему «А не векторная ли это величина — скорость» с вариантами ответа «Да» и «Разумеется»...


А как же варианты: "Так точно!" и "Несомненно, коллега!"?

 Профиль  
                  
 
 Re: Закон сохранения энергии
Сообщение28.03.2017, 08:43 
Заслуженный участник
Аватара пользователя


20/08/14
8711
Тогда уж и "да, магистр".

 Профиль  
                  
 
 Re: Закон сохранения энергии
Сообщение28.03.2017, 09:56 
Заслуженный участник


16/02/13
4214
Владивосток
Евгений Машеров в сообщении #1204248 писал(а):
А как же варианты
Anton_Peplov в сообщении #1204249 писал(а):
Тогда уж и "да, магистр"
Скорее «да, мессир». Список и правда стоит расширить :wink:

 Профиль  
                  
 
 Re: Закон сохранения энергии
Сообщение28.03.2017, 10:02 
Заслуженный участник
Аватара пользователя


20/08/14
8711
iifat в сообщении #1204258 писал(а):
Скорее «да, мессир»
Нет, тогда "мессир, вам стоит это приказать".

 Профиль  
                  
 
 Re: Закон сохранения энергии
Сообщение28.03.2017, 10:06 


05/09/16
12213
Stensen в сообщении #1204012 писал(а):
если правильно понимаю, при неупругом ударе потери на тепло будут всегда?

Необязательно именно на тепло, главное что при неупругом ударе кинетическая энергия не сохраняется.

 Профиль  
                  
 
 Re: Закон сохранения энергии
Сообщение28.03.2017, 10:26 
Аватара пользователя


26/11/14
773
Mihaylo в сообщении #1204228 писал(а):
$Q$ характеризует способность материала шаров поглощать кинетическую энергию в результате удара и в конечном итоге уходит в нагрев. Так понятнее?
Да, понятно.

iifat в сообщении #1204215 писал(а):
Два уравнения с двумя неизвестными. Конкретнее, что вас смущает-то?
Еще раз решил систему, теперь вроде не смущает.

DimaM в сообщении #1204227 писал(а):
Stensen в сообщении #1204051 писал(а):
Смущает, что одинаковые параметры: $u, \,  v_1, \,  v_2$ удовлетворяют двум разным уравнениям системы:
Так решение системы уравнений именно этим свойством и обладает.
Кстати, у этой системы два решения - знаете второе?
Нашел два решения системы (надеюсь правильно):

1. $v_1=u, \, v_2=0 $

2. $ v_1=\frac{m_1-m_2}{m_1+m_2}u, \, v_2=\frac{2m_1}{m_1+m_2}u$ - это решение когнитивного диссонанса вроде не вызывает. А вот первое не могу интерпретировать с точки зрения физики. Получается, что не зависимо от соотношения масс шаров, возможен вариант, когда шар 1 не изменит своей скорости, а второй не сдвинется с места? Помогите понять решение 1.

 Профиль  
                  
 
 Re: Закон сохранения энергии
Сообщение28.03.2017, 10:41 
Заслуженный участник


16/02/13
4214
Владивосток
Stensen в сообщении #1204265 писал(а):
первое не могу интерпретировать
Подсказываю: система из двух шаров удовлетворяет законам сохранения как до, так и после удара.

-- 28.03.2017, 17:42 --

(Оффтоп)

Anton_Peplov в сообщении #1204259 писал(а):
"мессир, вам стоит это приказать"
О!

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 37 ]  На страницу 1, 2, 3  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group