Нет.
Это только при условии критического саморавновесия.
Другими словами при произвольной длине больше критической натяжение в верхней точке ненулевое.
Если же длина меньше критической, у нас трение превращается в статическое, для которого нет однозначного решения. Вы попались на стандартную удочку школьника. :)
Обычно выглядит это так.
Я объясняю школьникам как работает трение на наклонной плоскости. Расчитываю ускорение. А потом привожу формулу для критического угла.
А дальше вопрос, что будет, если угол меньше критического?
А ускорение становится отрицательным и тело едет вверх
. Немая сцена!
Для примера неоднозначности трений и натяжений при статическом трении очень хороша следующая ситуация.
Пусть у нас есть треугольная наклонная плоскость с блоком в вершине и двумя массами по бокам, привязанными к нити, перекинутой через блок.
Есть трение.
И можно написать уравнение для ускорения системы в случае кинематического трения. Но Если это трение становится статическим, то точного решения доя натяжения нити и сил трения уже нет. Есть уравнения соотношений между ними.