Хочется расширить понятие интеграла, обладающего определенными свойствами. А вот эти свойства проявились в изучении интеграла Римана. Кроме того, есть условно сходящиеся несобственные интегралы Римана--они не покрываются Лебегом. Разумеется, можно ввести интеграл Лебега, а потом несобственный ИЛ. Но тут разрыв шаблона: раньше мы хватали множества, на которых функция принимает какие-то значения, не заботясь ни о чём, а тут какой-то отрезок, который расширяется. В ИР это естественно, и потому естественно обобщается на ИЛ.
Это тот же аргумент концептуальности, только с промежуточным шагом в виде того, что "вот вы знали до этого не слишком концептуальное понятие, а сейчас узнаем нормальное". То есть это мотивировка, конечно, но без этого промежуточного шага можно обойтись.
Про несобственные интегралы - мне кажется это понятие чисто инструментальное, поэтому ни в какой хороший контекст оно быть вписано не может и нужно честно так и признаваться "это такой вот технический трюк, который иногда может сработать, а иногда нет". Если проводить аналогию: разница такая же, как между когомологиями Гротендика (которые
) и когомологиями Чеха, первое понятие концептуальное и инвариантное (и инвариантную запись находит в формализме производных категорий), а второе - инструментальное и трюковое, хоть оно и формально тоньше в том смысле, что может различать более широкий класс пространств и их легче считать. Ну и точно так же интеграл Лебега ~ несобственный интеграл Лебега, никакого инвариантного взгляда на второе быть не может. И опять же, предварительное знание промежуточного звена в виде несобственного интеграла Римана не даёт какую-то дополнительную прочную мотивировку, а спускает немотивированность на этот самый интеграл Римана. Я не вижу, почему
В ИР это естественно
мы сначала брали предел по фильтру разбиений отрезка, а потом, вместо того, чтобы брать предел по фильтру разбиения прямой на отрезки (что даст "беззнаковый интеграл Римана") мы почему-то просто раздуваем отрезок. Неестественность точно такая же.