2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 5, 6, 7, 8, 9, 10  След.
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение07.03.2017, 16:18 
Заслуженный участник
Аватара пользователя


31/01/14
11467
Hogtown
Munin в сообщении #1197852 писал(а):
Ну, вы на него так уверенно ссылаетесь.

Вопрос про теорию множеств остался. И про алгебру и анализ, что придёт в голову, тоже накидайте.

Я ни на какой список не ссылался, но при чтении курса я всегда стараюсь начать тот или иной раздел, то или иное определение с мотивировки.

Про теорию множеств я написал (но я ее никогда не читал). Алгебру я не преподавал, и не собираюсь, и потому мыслей о мотивировках, кроме основных понятий линейной алгебры у меня особых нет. В анализе, включая УЧП и ДУ, я мотивирую основные определения (ну и объясняю, зачем надо изучать). Но это длинный разговор, и сейчас у меня времени на него нет.

Опять об интеграле Лебега. Теорию меры по существу древние знали: внутренняя мера, внешняя (метод исчерпывания). Но вот почему мы должны интегрировать по мере? Ответ: ну хотя бы потому, что интегрировали по длине, площади, когда изучали интеграл Римана. А если сразу по мере, то две идеи склеиваются, как пельмени у плохой хозяйки

 Профиль  
                  
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение07.03.2017, 17:36 
Заслуженный участник
Аватара пользователя


26/01/14
4904
Munin в сообщении #1197840 писал(а):
Изображение Простите, а где здесь теория множеств? Это же просто аналитическая геометрия.

Безусловно. Но её нельзя сформулировать без понятия множества (или, по крайней мере, затруднительно и не нужно).
Вопрос был в том, как мотивировать для школьников введение понятия множества.
Если под "теорией множеств" понималось что-то более продвинутое, типа мощностей и т.д., то я неправильно понял вопрос. (Хотя и здесь мотивировку я бы придумал.) Просто мне показалось, что вопрос стоит о той теории множеств, которую рассказывают школьникам - а школьникам её рассказывают, насколько я знаю, на уровне объединений и пересечений, и диаграмм Эйлера.

 Профиль  
                  
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение07.03.2017, 17:41 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Red_Herring в сообщении #1197885 писал(а):
А если сразу по мере, то две идеи склеиваются, как пельмени у плохой хозяйки.

Так это получается мотивировка или анти-мотивировка? :-)

 Профиль  
                  
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение07.03.2017, 18:15 
Заслуженный участник
Аватара пользователя


31/01/14
11467
Hogtown
анти-мотивировка. Я же сказал "у плохой хозяйки".

 Профиль  
                  
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение07.03.2017, 18:22 
Заслуженный участник
Аватара пользователя


09/02/14

1377
Red_Herring в сообщении #1197839 писал(а):
Хочется расширить понятие интеграла, обладающего определенными свойствами. А вот эти свойства проявились в изучении интеграла Римана. Кроме того, есть условно сходящиеся несобственные интегралы Римана--они не покрываются Лебегом. Разумеется, можно ввести интеграл Лебега, а потом несобственный ИЛ. Но тут разрыв шаблона: раньше мы хватали множества, на которых функция принимает какие-то значения, не заботясь ни о чём, а тут какой-то отрезок, который расширяется. В ИР это естественно, и потому естественно обобщается на ИЛ.

Это тот же аргумент концептуальности, только с промежуточным шагом в виде того, что "вот вы знали до этого не слишком концептуальное понятие, а сейчас узнаем нормальное". То есть это мотивировка, конечно, но без этого промежуточного шага можно обойтись.

Про несобственные интегралы - мне кажется это понятие чисто инструментальное, поэтому ни в какой хороший контекст оно быть вписано не может и нужно честно так и признаваться "это такой вот технический трюк, который иногда может сработать, а иногда нет". Если проводить аналогию: разница такая же, как между когомологиями Гротендика (которые $R^i F$) и когомологиями Чеха, первое понятие концептуальное и инвариантное (и инвариантную запись находит в формализме производных категорий), а второе - инструментальное и трюковое, хоть оно и формально тоньше в том смысле, что может различать более широкий класс пространств и их легче считать. Ну и точно так же интеграл Лебега ~ несобственный интеграл Лебега, никакого инвариантного взгляда на второе быть не может. И опять же, предварительное знание промежуточного звена в виде несобственного интеграла Римана не даёт какую-то дополнительную прочную мотивировку, а спускает немотивированность на этот самый интеграл Римана. Я не вижу, почему

Red_Herring в сообщении #1197839 писал(а):
В ИР это естественно


мы сначала брали предел по фильтру разбиений отрезка, а потом, вместо того, чтобы брать предел по фильтру разбиения прямой на отрезки (что даст "беззнаковый интеграл Римана") мы почему-то просто раздуваем отрезок. Неестественность точно такая же.

 Профиль  
                  
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение07.03.2017, 18:40 
Заслуженный участник
Аватара пользователя


31/01/14
11467
Hogtown
kp9r4d в сообщении #1197912 писал(а):
Неестественность точно такая же.

Если вам это кажется неестественным, то только в силу противоестественности ваших концепций

 Профиль  
                  
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение07.03.2017, 18:57 
Заслуженный участник
Аватара пользователя


09/02/14

1377
Hmmm. Если вам это кажется естественным, то только в силу противоестественности ваших концепций.

(Оффтоп)

Больше не буду.

 Профиль  
                  
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение07.03.2017, 22:49 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Red_Herring
Тогда, видимо, у меня они уже слиплись. Что такое внутренняя и внешняя мера?

 Профиль  
                  
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение07.03.2017, 23:15 
Заслуженный участник
Аватара пользователя


08/11/11
5940
kp9r4d в сообщении #1197912 писал(а):
мы сначала брали предел по фильтру разбиений отрезка, а потом, вместо того, чтобы брать предел по фильтру разбиения прямой на отрезки (что даст "беззнаковый интеграл Римана") мы почему-то просто раздуваем отрезок. Неестественность точно такая же.


В интеграле Лебега при переходе к бесконечному интервалу и неограниченной функции точно так же приходится раздувать -- или нет?

 Профиль  
                  
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение08.03.2017, 00:52 
Заслуженный участник
Аватара пользователя


09/02/14

1377
Мне кажется нет, раздутие - это нечто такое, что можно осуществлять только в $\mathbb{R}$ (или, на крайний случай, в $\mathbb{R}^n$) а интеграл Лебега определён для любой функции $\to [0..+\infty]$ для любого пространства с мерой одинаковым образом. А интеграл от функции $\to \mathbb{R}$ определяется как $\int f^+ - \int f^-$ (в том случае, когда оба интеграла $< \infty$).

А когда раздувают в $\mathbb{R}^n$ то как раз называется "несобственным интегралом Лебега".

 Профиль  
                  
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение08.03.2017, 04:44 
Заслуженный участник
Аватара пользователя


08/11/11
5940
kp9r4d в сообщении #1198022 писал(а):
Мне кажется нет, раздутие - это нечто такое, что можно осуществлять только в $\mathbb{R}$ (или, на крайний случай, в $\mathbb{R}^n$) а интеграл Лебега определён для любой функции $\to [0..+\infty]$ для любого пространства с мерой одинаковым образом. А интеграл от функции $\to \mathbb{R}$ определяется как $\int f^+ - \int f^-$ (в том случае, когда оба интеграла $< \infty$).


Ну там есть некоторая тонкость, если мера всего пространства бесконечна. Я не знаю, может быть, есть какой-то умный и инвариантный способ это сделать, но наиболее пафосные учебники, наоборот, строят его для простых функций (ограниченных и с носителем конечной меры, и к тому же принимающих нбч счётное число значений), а потом распространяют. Т. е. конструкция, аналогичная как раз несобственному интегралу Римана.

 Профиль  
                  
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение08.03.2017, 12:24 
Заслуженный участник
Аватара пользователя


31/01/14
11467
Hogtown
Munin в сообщении #1197987 писал(а):
Тогда, видимо, у меня они уже слиплись. Что такое внутренняя и внешняя мера?

Допустим, мы научились находить меру какого-то класса множеств. Для современных математиков и стандартной Лебеговой меры (ну еще не совсем) это элементы сигма алгебры, порождаемой прямоугольниками (т.е. борелевской), а для древних греков--многоугольников и многогранников. Теперь мы расширяем понятие меры: прежде всего внешняя мера $X$ это инфимум мер всех измеримых множеств его содержащих, а внутренняя мера $X$ это супремум мер всех измеримых множеств в нем содержащихся.

Теперь, если эти меры совпадают, мы называем $X$ измеримым, ну и приписываем соответствующую меру. От меры Бореля к мере Лебега. Повторение процедуры ничего нового не дает.

-- 08.03.2017, 04:25 --

Отказываться в угоду концепции от несобственных интегралов и интегралов в смысле главного значения?

 Профиль  
                  
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение08.03.2017, 12:35 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Red_Herring в сообщении #1198077 писал(а):
Теперь мы расширяем понятие меры: прежде всего внешняя мера $X$ это инфимум мер всех измеримых множеств его содержащих, а внутренняя мера $X$ это супремум мер всех измеримых множеств в нем содержащихся.

Спасибо, ясно! (Я боялся, что-то более сложное.)

Red_Herring в сообщении #1198077 писал(а):
Отказываться в угоду концепции от несобственных интегралов и интегралов в смысле главного значения?

А зачем они нужны-то, несобственные?
В жизни обычно надо везде явно указывать обход полюсов, а не говорить что-то про "главные значения" - напорешься...

 Профиль  
                  
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение08.03.2017, 12:53 
Заслуженный участник
Аватара пользователя


31/01/14
11467
Hogtown
Munin в сообщении #1198083 писал(а):
В жизни обычно надо везде явно указывать обход полюсов, а не говорить что-то про "главные значения" - напорешься..
Ну есть довольно много теорем где "правильно" брать именно г.з. Например при интерпретации $1/x$ как обобщенной функции. И очень много в ТФКП

 Профиль  
                  
 
 Re: Колмогоров, Киселев, Вербицкий ...
Сообщение08.03.2017, 17:03 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
Red_Herring в сообщении #1198085 писал(а):
Ну есть довольно много теорем где "правильно" брать именно г.з. Например при интерпретации $1/x$ как обобщенной функции. И очень много в ТФКП

А еще при обращении преобразования Фурье, при изучении граничного поведения аналитических и гармонических в круге функций и много еще где.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 143 ]  На страницу Пред.  1 ... 5, 6, 7, 8, 9, 10  След.

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group