А, ну да. ЛЛ-3 (48.2) пишут

и вот это называют квантованием Бора-Зоммерфельда, но это, конечно, неверно.
Ну, не могу не встрять, хотя и не о чем. Эта самая

и называется поправкой Зоммерфельда (у Бора её не было). Возникает она от того самого индекса Маслова-Морса, в суе здесь поминавшегося, либо, другими словами, от дополнительной фазы, набегающей в точке поворота траектории. Как её получал Зоммерфельд не знаю, но подозреваю, что по аналогии с соответствующей поправкой в оптике при отражении.
Квазиклассика это асимптотическое разложение по обратной постоянной Планка, а про такие разложения известно, что частенько они работают далеко за пределами своей формальной применимости (вспомним формулу Стирлинга при

). Поэтому квазиклассика - вполне дееспособный подход, только для его применения надо уметь точно решать соответствующую классическую задачу, а в случае более чем одной степени свободы точно решаемых классических задач небогато.