2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3  След.
 
 Постановка задачи для уравнения теплопроводности
Сообщение01.11.2016, 18:44 


11/07/16
81
Добрый день.
Я пытаюсь разобраться, как поставить начальные и граничные условия для задачи следующего вида:
В бесконечном брусе прямоугольного сечения $(x, y) \in [-a, a] \times [-b, b]$ равномерно выделяется тепло плотностью $Q$. Поверхность бруса теплоизолирована за исключением полосы $x \in [-d, d] (d < a)$ на верхней грани. В пределах этой полосы через поверхность равномерно отводится тепловой поток $q$. Найти условие теплового равновесия, определить стационарное распределение температуры.

Насколько я понимаю, ввиду симметрии по оси $Z$ целесообразно рассмотреть сечение бруса $(x, y) \in [-a, a]\times[-b, b]$ с полосой $x \in [-d, d]$ и решать таким образом уравнение теплопроводности $\frac{\partial u}{\partial t}  - \beta^2 \Delta u = Q$ для двух координат $x$ и $y$. Нельзя ли сделать еще какие-то допущения, чтобы упростить задачу? И будет ли это уравнение однородным, ведь у нас есть источники тепла?

Если я верно понял, теплоизоляция всех стенок, за исключением одной полосы дает равенство нулю потока тепла через эти стенки:
$\frac{\partial u}{\partial x} \big|_{x \in [-a, a] \backslash x \in [-d, d]} = 0$

Как быть с остальными условиями?

 Профиль  
                  
 
 Posted automatically
Сообщение01.11.2016, 18:52 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Помогите решить / разобраться (Ф)» в форум «Карантин»
по следующим причинам:

- неправильно набраны формулы (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы);
- Вы бы хотя бы само уравнение теплопроводности записали...

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение01.11.2016, 20:05 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (Ф)»


-- 01.11.2016, 20:15 --

Astroid в сообщении #1165123 писал(а):
Так вот я и не знаю, как (и нужно ли?) этот член учитывать, ведь процесс стационарный.
Естественно, нужно.

Собственно, что следует из стационарности? Напишите соответствующее условие (а потом посмотрите на то, что у Вас получилось для теплоизоляции). Как выглядит выражение для потока через границу?

 Профиль  
                  
 
 Re: Posted automatically
Сообщение01.11.2016, 20:43 


11/07/16
81
Из стационарности следует $\frac{\partial u}{\partial t}\big|_ {t \to \infty} = 0 $, верно?

 Профиль  
                  
 
 Re: Постановка задачи для уравнения теплопроводности
Сообщение01.11.2016, 20:43 
Заслуженный участник


12/07/07
4522
Astroid в сообщении #1165100 писал(а):
В пределах этой полосы через поверхность равномерно отводится тепловой поток $q$.
Остается записать это условие. Размерности не указаны. Первое что приходит в голову
$\frac {\partial u}{\partial x} \big|_{x \in [-d, d], y=???} = q.$
Надо смотреть книгу или конспект лекций в поисках договорённостей.

 Профиль  
                  
 
 Re: Постановка задачи для уравнения теплопроводности
Сообщение01.11.2016, 20:49 


11/07/16
81
Вроде логично, что в Вашем выражении в таком случае будет $y = b$.

 Профиль  
                  
 
 Re: Постановка задачи для уравнения теплопроводности
Сообщение01.11.2016, 20:50 
Заслуженный участник


09/05/12
25179
Astroid в сообщении #1165145 писал(а):
Из стационарности следует $\frac{\partial u}{\partial t}\big|_ {t \to \infty} = 0 $, верно?
Да, но на практике Вас интересует уже предельный случай, не так ли?
GAA в сообщении #1165146 писал(а):
Остается записать это условие. Размерности не указаны. Первое что приходит в голову
Коэффициент теплопроводности было бы полезно оставить. :-) К такому виду оно, конечно, приведется, но тогда в правой части будет не $q$.

 Профиль  
                  
 
 Re: Постановка задачи для уравнения теплопроводности
Сообщение01.11.2016, 20:51 


11/07/16
81
Pphantom,

(Оффтоп)

Спасибо большое за редакцию оригинального поста!

 Профиль  
                  
 
 Re: Постановка задачи для уравнения теплопроводности
Сообщение01.11.2016, 20:54 


27/08/16
10172
Astroid в сообщении #1165100 писал(а):
Нельзя ли сделать еще какие-то допущения, чтобы упростить задачу?
Ввиду симметрии можно рассмотреть задачу в области $(x, y) \in [0, a]\times[-b, b]$ с условием теплоизолированности на границе $x=0$

 Профиль  
                  
 
 Re: Постановка задачи для уравнения теплопроводности
Сообщение01.11.2016, 20:58 
Заслуженный участник


12/07/07
4522
Pphantom в сообщении #1165152 писал(а):
Коэффициент теплопроводности было бы полезно оставить. :-) К такому виду оно, конечно, приведется, но тогда в правой части будет не $q$.
Да, конечно. Я через $q$ привык обозначать приведенный поток. Но тут это не уместно. Спасибо!

 Профиль  
                  
 
 Re: Постановка задачи для уравнения теплопроводности
Сообщение01.11.2016, 21:05 


27/08/16
10172
Astroid в сообщении #1165100 писал(а):
Найти условие теплового равновесия
Можете ли вы ответить на этот вопрос сразу, без расчётов?

 Профиль  
                  
 
 Re: Постановка задачи для уравнения теплопроводности
Сообщение01.11.2016, 21:09 
Заслуженный участник


09/05/12
25179
realeugene в сообщении #1165161 писал(а):
Можете ли вы ответить на этот вопрос сразу, без расчётов?
Я бы сказал, что ответить на этот вопрос нужно сразу. :D

 Профиль  
                  
 
 Re: Постановка задачи для уравнения теплопроводности
Сообщение01.11.2016, 21:19 
Заслуженный участник


12/07/07
4522
Astroid в сообщении #1165100 писал(а):
И будет ли это уравнение однородным, ведь у нас есть источники тепла?
Оно не однородное, но стандартным образом сводится к однородному. Замена $u=u_0 +v$, где $v$ удовлетворяет уравнению Лапласа, а $u_0$ — очевидно чему. :) Больше не мешаю. :)

Upd. В стандартных обозначениях
$c\rho u_t = k u_{xx} + Q$,
$-k u _x \big|_{\partial D} = q$,
$c$ — удельная теплоёмкость, $\rho$ — плотность, $k$ — теплопроводность, $Q$ — плотность тепловых источников.
Это можно переписать в виде
$u_t = \beta^2 u_{xx} + f$, $f = Q/(c\rho)$
$ ku _x \big|_{\partial D} = -q$,
Т.е. если использовать стандартные обозначения, то нужно знак минус в граничном условии дописать. Или помнить. :) [произведение $c\rho$ --- видимо равно 1, при такой постановке задачи в начальном сообщении.]
Ну, а для поиска решения можно посмотреть в сторону теории потенциалов.

 Профиль  
                  
 
 Re: Постановка задачи для уравнения теплопроводности
Сообщение02.11.2016, 01:12 


11/07/16
81
Pphantom в сообщении #1165163 писал(а):
realeugene в сообщении #1165161 писал(а):
Можете ли вы ответить на этот вопрос сразу, без расчётов?
Я бы сказал, что ответить на этот вопрос нужно сразу. :D

Рискую показаться невежей, но мне в голову идет что-то вроде уравнения непрерывности: $$\frac{\partial u}{\partial t} + \nabla \widetilde{q} = Q$$, где $\widetilde{q}$ - плотность потока $q$. Но тогда непонятно откуда получить эту плотность.
GAA, обязательно в сторону метода потенциалов смотреть? Можно ли в принципе эту задачу решить методом Фурье?

 Профиль  
                  
 
 Re: Постановка задачи для уравнения теплопроводности
Сообщение02.11.2016, 01:40 


27/08/16
10172
Astroid в сообщении #1165260 писал(а):
Рискую показаться невежей, но мне в голову идет что-то вроде уравнения непрерывности

Попытайтесь воспользоваться законом сохранения энергии в интегральной форме.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 33 ]  На страницу 1, 2, 3  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: s4kkkk


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group